Mre im Applied Microbialogy 488

15P/292/23

Question Booklet No., 13 / /

(To be filled up by the candidate by blue/black ball-point pen)

(Use only blue/black ball-point pen in the space above and on both saces of the fallower officer,

- Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that
 it contains all the pages in correct sequence and that no page/question
 Question Booklet bring it to the notice of the Superintendent/Invigilators imm
 fresh Question Booklet.
- Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR Sheet No. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- For each question, darken only one circle on the Answer Sheet. If you darken more than one circle
 or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidat as the University form of unfair means, he/she shall be liable to such punishment and impose on him/her.

। उपर्यंक निर्देश हिन्दी में :

: *****1

[No. of Printed Pages: 28+2

No. of Questions/प्रश्नों की संख्या : 150

Time/समय : 21/2 Hours/घण्टे

Full Marks/पूर्णांक : 450

Note:

- (1) Attempt as many questions as you can. Each question carries 3 marks.

 One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.

 अधिकाधिक प्रश्नों को हल करने का प्रयत्न करें। प्रत्येक प्रश्न 3 अंक का है। प्रत्येक गलत उत्तर के लिए एक अंक काटा जाएगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक शून्य होगा।
- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
 यदि एकाधिक वैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर दें।
- 1. 5-bromouracil acts as a mutagen by pairing with
 - (1) adenine
- (2) guanine
- (3) cytosine
- (4) thymine
- 2. An organism capable of carrying out butanol fermentation is
 - (1) Zymomonas

- (2) Clostridium butyricum
- (3) Clostridium acetobutylicum
- (4) Enterobacter

(P.T.O.)

	Live vaccines are available against (1) Influenza (2) Measles Antigenic variation is most extensi (1) Influenza virus (3) Measles virus	(3) Rabies (4) Polio
	Which of the following is not a DN. (1) SV40 (2) T4 phage During meiosis, crossing-over mostly	(3) TMV (4) Adenovirus y occurs during
,	(1) prophase I (2) prophase II Human papilloma virus causes whice (1) Hepatitis (3) AIDS	(3) anaphase I (4) Telophase II
(332)	2	17/ Otal Cancer

	(1) haptens	(2) carriers	(3)	antigens	(4)	antibodies	*
12.	Which of the follo			nome? Viroid	(4)	TLCV	
13.	(1) CaMV Ergot disease is o	(2) CMV	(3)	YIIOM	1.7		
	(1) Claviceps	(2) Rhizopus	•	Puccinia	10.00	Mucor	
14.	The PMF drives pr synthesize ATP in	rotons across mic a process know	robial i m as	membranes,	and th	e energy is u	sed to
	(1) chemiosmosis	Į.	(2)	photosynthe	esis .		
	(3) respiration	,	(4)	chemolithot	rophy		195
15.	All of the following				pt	#	
	(1) they are self-	replicating loops	of DN.	٨			
	(2) they have 10	-50 genes			• 7		
	(3) they are requ		•				
	(4) they are esse	ential for surviva	l of the	organism			
1. 1 .			3		5		(P.T.O.)
						The second secon	

	(4) the virus fails to replicate in the bacterial cell
17,	UV light causes mutation in bacteria by
	(1) causing frame-shift
	(2) causing inversion
	(3) causing dimerization of adjacent thymine residues
3	(4) causing transition
18,	All except the following is true for Agrobacterhim tumefaciens
	(1) it carries the Ti plasmid
	(2) it carries oncogenes on its plasmid
	(3) it causes crown gall disease
	(4) it is a Gram-positive bacterium
19.	The capsular material produced by bacteria generally consists of
	(1) lipids (2) polysaccharides
	(3) fatty acids (4) nucleic acids
(332)	e (r .4
	F •

	(1) bacteria	(2) fu	ngi	(3) algae	(4)	viruses	
22.	The enzyme that replication is a	relaxes :	supercoiling	ahead of the	replicatio	n fot	
	(1) methylase	(2) DI	NA gyrasc	(3) primase	(4)	transposas	e
23.	The metal used t	o recov	er copper fi	rom a solutio	n of coppe	r sulphate	is
	(1) Fe	(2) H ₂	g	(3) Ag	(4)	Mn	2/
24.	Hap70 is a					* 80	
	(1) heat shock p	rotein					
	(2) produced by		ressed E. o	oli			V.
	(3) helps remove						÷8
• 9	(4) All of the ab					30(4)	2
25.	Endospore forma	tion in	Bacillus is	triggered by			e:
	(1) starvation						
•	(2) desiccation			N			
	(3) growth inhib	itory te	mperatures				
	(4) All of the ab	OVC					
(332)	L			5	e s		(P.T.O.)

	(7) it has an Mr	approximately 10	9 kDa	
27.	A compound light	t microscope cann	ot resolve stru	ictures smaller man
	(1) 10 μm	(2) 5 μm	(3) 2 μm	
28.	An envelope is ac	quired by certain		
	(1) enter the host			
	(2) migrate to the			
	(3) assemble in the			
	(4) bud through t	17	orane	
29 .	HIV forms DNA fro	om its RNA templ	ate using the	following enzyme
	(1) RNA polymeras	se .	(2) Primase	G
	(3) Reverse transcr	riptase	(4) Helicase	*
30.	Which of the follow	ving are incapable	of producing	toxins in the body?
	(1) Clostridium teta	mi		- Lough
	(2) Human immun	odeficiency virus	in.	
	(3) Escherichia coli			

(4) Clostridium botulinum

	All of the tonowing represent money		
	except (1) IgG production (2) production of mucus by the linit (3) production of acid in the stomac		
	(4) phagocytosis by macrophages		
33.	A visible clumping of particles occur	rs to the observer in	
3	(1) ELISA	(2) Agglutination test	. 1
	(3) Precipitation test	(4) Radioimmunoassay	
34.	Complex I of the electron transport	chain is called	
	(1) succinate/coq oxidoreductase		543
	(3) ubiquinone	(4) NADH/co oxidoreductase	
35.	Antibiotics are largely produced by	bacteria during	
-	(1) lag phase	(2) log phase	
	(3) stationary phase	(4) decline phase	
(000)	,	7	(P.T.O.)

	(1) a specific micro-orga	nism to a specific disc	
	(2) spontaneous generati		Organic matter
	(3) production of toxins		
	(4) transmission of sleep	ing sickness to tectse fi	ies
38.	The number of moles of	solute present in one K	g of a solvent is called
	(1) normality	(2) molality	
	(3) molarity	(4) None of	the above
39 .	The transfer of RNA onto a	nitrocellulose membran	e and its detection is part of
	(I) Southern blotting	(2) Northern	
	(3) Western blotting		estern blotting
40.	E. coli chromosome conta		
-	(1) 500 ORFs (2) 200		RFs (4) 8000 ORFs
41.	What is the concentration of	of H ⁺ in a solution of O-1	M NaOH ($Kw = 1 \times 10^{14} \text{ M}^2$)?
	(1) 10 ⁻¹¹ M (2) 10 ⁻¹		
(332)		8	

	(4) rod shaped encapsulated cells			
43 .	Phylogenetic tree of bacteria is con	struct	ed based on the sequencing	OI
	(1) 18S rRNA	(2)	16S rRNA	39
	(3) DNA	(4)	All of the above	
44.	Pasteurization involves treatment v	vith		
	(1) low temperature	(2)	steaming	
	(3) high temperature	(4)	low and high temperatures	
	<u> </u>		a .	
45.	Common food poisoning microbes	are		¥
	(1) Clostridium and Salmonella	(2)	Clostridium and E. coli	
	(3) E. coli and Salmonella	(4)	Clostridium and Rhizobium	
	*.			
46.	The Pine seedlings grow best in so	oils wi	th .	
	(1) VAM	(2)	Ectotrophic mycorrhiza	
	(3) Arbutoid mycorrhiza	(4)	Ericoid mycorrhiza	29
332)		9		(P.T.O.)

The second secon
(1) is essentially a saprophyte but can also live as a parasite
(2) always lives as a parasite
(3) never causes disease in a host
(4) can only live as a saprophyte
A clear area in the lawn of growing bacterial cells initiated upon bacteriophage infection is called
(1) inhibition zone (2) plaque
(3) halo (4) colony forming unit
Water
(1) can give up an H ⁺ , becoming OH ⁻
(2) can accept an H ⁺ , becoming H ₃ O ⁺
(3) can form hydrogen bonds
(4) All of the above
SARS involves infection of the
(1) gastrointestinal tract (2) urinary tract
(3) respiratory tract (4) genitourinary tract
10
Si and the state of the state o

	(4) at a site other than the active si	te in a noncompetitive manner
53.	When four different groups are atta structure formed is a	ched to a tetrahedral carpon atom, the
	(1) isomer	(2) stereoisomer
	(3) simple hydrocarbon	(4) amphipathic molecule
64 .	Tubulin in Cilia and Flagella are exa	imples of
v	(1) hormonal proteins	(2) storage proteins
3 "	(3) motility proteins	(4) defence proteins
55.	Hydrogen bonds cannot form between	n.
	(1) water and glucose	(2) water and water
	(3) water and phosphate	(4) phosphate and octane
56 .	If a length of DNA has 45000 base B-DNA take?	pairs, how many complete turns will a
	(1) 45 (2) 450	(3) 4500 (4) 45000
	• •	(P.T.O.)
(332)	11	1,

(332)

58.	 Gram staining is a technique used of their 	for differentiating bacterial cells on the basis
	(1) reproduction	(2) inclusions
	(3) cell wall composition	(4) flagellation
	#E	s **
59 .	. The lac operon is	
	(1) under the control of catabolite	repression
	(2) under the control of its own a	pecific negative regulatory system
	(3) Both positively and negatively	
	(4) All are correct	
	40	
60.	. Which of the following is normally a secreting a desired monoclonal an	ssociated with the production of hybridomas tibody?
	(1) Blockage of the nucleotide sale	age pathway by aminopterin
	(2) Mitogen-induced antibody dive	
	(3) Myeloma cells producing antib	
	(4) None of the above	
		9

12

	(1) 62-9 °C 101 30 minutes	(2) 110 0 101	to account	
	(3) 71.6 °C for 30 minutes	(4) 82 °C for 3	3	
63.	Strictly anaerobic, anoxygenic ph	nototrophs that use	the Calvin cycle	for CO ₂
	(1) nitrifying bacteria	(2) green sulph	ur bacteria	
	(3) purple sulphur bacteria	(4) sulfur oxidi	zing bacteria	vi 6.4000
64.	The toxin produced by Bacillus t	huringiensis is		
	(1) a lipid with insecticidal prop	erties		¥
	(2) a protein with insecticidal pr	operties		×
	(3) a lipid with antiviral properti	ies		
	(4) a sugar with insecticidal pro	perties		₽6 201
65.	One of the major reasons for ap	optosis is		2
20	(1) lack of polymerase	(2) activity of	endonucleases	
12	(3) activity of mitochondria	(4) reduced for	od intake	3.53
66.	Phytoplanktons are dominant in	which of the follow	ing zones?	ŧ
	(1) Limnetic (2) Profundal	(3) Littoral	(4) Benthic	
332)		13		(P.T.O.)
	×.		2) 43	(5)

	(4) safe antibiot	tics			
68.	Which of the fo	llowing compo	ında would have	the highest boiling poin	nt?
	(1) CH3CH2CH2	СН ₃	(2) CH ₃ NI	H ₂	
	(3) CH ₃ OH		(4) CH ₂ F ₂		
69.	Number of proto	ofilaments in a	microtubule is	,	
	(1) 5	(2) 10	(3) 12	(4) 13	
70.	P ₈₇₀ reaction cer	ntre is associa	ed with the phot	tosynthetic machinery is	ń
	(1) cyanobacteri	a	(2) purple	bacteria	
	(3) green bacter	ia .	(4) algae	*	
71.	Enzymes that call	atalyze the tra	nsfer of a phosp	ohoryl group from ATP	to an
	(1) kinases		(2) hydrole	ases	
	(3) mutases		(4) oxido-r	reductases	
(332)	2		14		

	N v	
73.	Direct microscopic counts can be use of all of the following, except	ed to determine th
	(1) virus (2) bacteria	(3) protozoa (4) fungi
74.	The polysaccharide used to solidify	bacterial growth media is
	(1) Gelatin	(2) Agar
	(3) Starch	(4) All of the above
75.	Micro-organisms that survive in the	e absence of moisture do so because
	(1) they produce flagella	(2) metabolize glucose
	(3) have no cell membranes	(4) produce spores
76.	Two components of the cell membra	rane in prokaryotes are
	(1) DNA and RNA	(2) ATP and lipids
	(3) lipids and DNA	(4) lipids and proteins
77.	Organic molecules functioning as co	coenzymes/cofactors of enzymes are
	(1) ubiquinone and cytochromes	(2) NAD and FAD
	(3) ATP and ADP	(4) glucose and pyruvate
332)	- 19	5 (P.T.O.)
	*	

	(3) polysaccharide	(4)	lipid
80.	Central dogma of genetic informa	tion he	s been modified by the discovery of
	(1) reverse transcriptase	(2)	DNA polymerase
	(3) restriction endonuclease	(4)	RNA polymerase
81.	Electron from Cyt C are carried	to mole	cular O ₂ in
	(1) fermentation	(2)	aerobic respiration
	(3) anaerobic respiration	(4)	denitrification
82.	A sexually transmitted disease a genitals is caused by	showing	development of a chancre on the
	(1) Neisseria gonorrhoeae		. 12
	(2) Treponema pallidium		
	(3) Hepatitis B virus		** •*
	(4) human immunodeficiency viru	18	41
(332)		16	

(3) Trichoderma harzianum (4) Nuclear polyhedrosis varus 85. When the F-factor is transferred to a bacterium during conjugation, the receiving bacterium (1) becomes resistant (2) acquires a capsule (3) converts to donor bacterium (4) dies 86. Most cases of tetanus are due (1) deep wounds (2) respiratory droplets (3) bites of arthropods (4) consuming unpasteurized milk 87. Immunization with Sabin vaccine is to protect against (1) HIV (2) Tuberculosis (3) Polio (4) Hepatitis 88. The noncoding RNA include (1) rRNA (2) tRNA (3) mRNA (4) Both rRNA and tRNA				
When the F-factor is transferred to a bacterium during conjugation, the receiving bacterium (1) becomes resistant (2) acquires a capsule (3) converts to donor bacterium (4) dies 6. Most cases of tetanus are due (1) deep wounds (2) respiratory droplets (3) bites of arthropods (4) consuming unpasteurized milk 67. Immunization with Sabin vaccine is to protect against (1) HIV (2) Tuberculosis (3) Polio (4) Hepatitis 68. The noncoding RNA include (1) rRNA (2) tRNA (3) mRNA (4) Both rRNA and tRNA		(1) Xanthomonas campestris	(2) Bacillus thuring	9
receiving bacterium (1) becomes resistant (2) acquires a capsule (3) converts to donor bacterium (4) dies 66. Most cases of tetanus are due (1) deep wounds (2) respiratory droplets (3) bites of arthropods (4) consuming unpasteurized milk 67. Immunization with Sabin vaccine is to protect against (1) HIV (2) Tuberculosis (3) Polio (4) Hepatitis 68. The noncoding RNA include (1) rRNA (2) tRNA (3) mRNA (4) Both rRNA and tRNA		(3) Trichoderma harzianum	(4) Nuclear polyhedrosis varus	
(3) converts to donor bacterium (4) dies 86. Most cases of tetanus are due (1) deep wounds (2) respiratory droplets (3) bites of arthropods (4) consuming unpasteurized milk 87. Immunization with Sabin vaccine is to protect against (1) HIV (2) Tuberculosis (3) Polio (4) Hepatitis 88. The noncoding RNA include (1) rRNA (2) tRNA (3) mRNA (4) Both rRNA and tRNA	85.		to a bacterium during conjugation, th	ie
(1) deep wounds (2) respiratory droplets (3) bites of arthropods (4) consuming unpasteurized milk 87. Immunization with Sabin vaccine is to protect against (1) HIV (2) Tuberculosis (3) Polio (4) Hepatitis 88. The noncoding RNA include (1) rRNA (2) tRNA (3) mRNA (4) Both rRNA and tRNA		(1) becomes resistant	(2) acquires a capsule	
(1) deep wounds (2) respiratory droplets (3) bites of arthropods (4) consuming unpasteurized milk 87. Immunization with Sabin vaccine is to protect against (1) HIV (2) Tuberculosis (3) Polio (4) Hepatitis 88. The noncoding RNA include (1) rRNA (2) tRNA (3) mRNA (4) Both rRNA and tRNA		(3) converts to donor bacterium	(4) dies	
(3) bites of arthropods (4) consuming unpasteurized milk 87. Immunization with Sabin vaccine is to protect against (1) HIV (2) Tuberculosis (3) Polio (4) Hepatitis 88. The noncoding RNA include (1) rRNA (2) tRNA (3) mRNA (4) Both rRNA and tRNA	86.	Most cases of tetanus are due	v es:	
87. Immunization with Sabin vaccine is to protect against (1) HIV (2) Tuberculosis (3) Polio (4) Hepatitis 88. The noncoding RNA include (1) rRNA (2) tRNA (3) mRNA (4) Both rRNA and tRNA		(1) deep wounds	(2) respiratory droplets	
(1) HIV (2) Tuberculosis (3) Polio (4) Hepatitis 88. The noncoding RNA include (1) rRNA (2) tRNA (3) mRNA (4) Both rRNA and tRNA		(3) bites of arthropods	(4) consuming unpasteurized milk	•
SS. The noncoding RNA include (1) rRNA (2) tRNA (3) mRNA (4) Both rRNA and tRNA	57 .	Immunization with Sabin vaccine is	is to protect against	
(1) rRNA (2) tRNA (3) mRNA (4) Both rRNA and tRNA	•	(1) HIV (2) Tuberculosis	(3) Polio (4) Hepatitis	
(3) mRNA (4) Both rRNA and tRNA	88.	The noncoding RNA include	72 Telephone (1997)	28
		(1) rRNA	(2) tRNA	
90) 17 (PT)		(3) mRNA	(4) Both rRNA and tRNA	
OU) (4 - 4 - 2	32)	17).)·

	,	
	(1) antibiotic production	(2) Sauer modulation
	(3) alcohol production	(4) citric acid production
91.	Tetracyclines are antibiotics that pr	revent the synthesis of
25	(1) cell wall	(2) nucleic acid
	(3) protein	(4) cytoplasmic membrane
92.	Nitrogenase is an enzyme that regu	lates
	(1) nitrogen fixation	(2) nitrification
95 <u>0</u> 0	(3) nitrate dissimilation	(4) denitrification
93.	A mutation in which one amino aci	id is substituted for another is called
	(1) deletion	(2) frame-shift mutation
	(3) nonsense mutation	(4) missense mutation
94.	Both DNA and RNA absorb maxima	illy at
	(1) 210 nm (2) 280 nm	(3) 300 nm (4) 260 nm
(332)	. 18	•
	10	

	(3) competition	(4) predation
97.	Zoogloeas are	
	(1) viruses (2) bacteria	(3) nematode (4) algae
98.	Prochloron is an oxygenic phototropi	which contains
	(1) Chlorophyll a	(2) Chlorophyll b
	(3) Both Chlorophyll a and b	(4) Phycobilins
99.	In the ocean, spiralling surface current micro-organisms are called	its that concentrate nutrients, wastes and
	(1) geothermal vents	(2) gyres
	(3) red tides	(4) photic zone
١٥٥.	What is the mean number of bases	per twist in Z-DNA?
	(1) 10 (2) 9	(3) 11 (4) 12
101.	Hartig net is associated with, select	the most appropriate one
	(1) Ectotrophic mycorrhiza	(2) Endotrophic mycorrhiza
	(3) Ectoendotrophic mycorrhiza	(4) Basidiomycetes
332)	19	(P.T.O.)
	± 1	

		177 4	(၁)	3	(4)	4
104.	Which ar	nong these is not a	mycotoxin?	•		
	(1) Aflato	o xi n	(2)	Patulin		
	(3) Ochra	atoxin	(4)	8-toxin		120
105.	Acetic ac significan	id, lactic acid, succi t amounts during	inic acid, e	thanol, CO ₂	and H	are produced
	(1) mixed	-acid fermentation	(2)	butanediol f	ermeni	tetion
8.	(3) alcoho	olic fermentation		lactic-acid fe		
106.	The numb	er of pathogens that	either kill o	r infect 50%	of an e	kperimental grou
	(1) ID ₅₀	E	(2)	D value		
	(3) LD		20.000	None of the	above	187
107.	Which of	the following statem				
	(1) They a	are secreted by the	bacterial ce	lis	naotox	uns?
		are generally produc			cteria	1
	(3) They a	re heat stable	5. %		01011121	2
	(4) They a	re weakly immunog	enic			
(332)			20	,		

•						•
110.	The drug A	ZT, effective against l	-IIV, is			
	(1) DNA po	nlymerase				
	(2) гечегве	transcriptase inhibito	r			
	(3) RNA po	olymerase		ř		
	(4) proteas	e inhibitor	e a			
111.	Metal that	is used as a catalyst	in hydrogenat	ion of o	ils is	
E	(1) Ni	(2) Pb	(3) Zn		(4) Cd	
112.	Nod factor	•		5		,
	(1) help in	the formation of nod	ule			
	(2) induce	root hair curling				
	(3) trigger	plant cell division	2		(S	
	(4) do all	of the above	(*)			
(332)			21			(P.T.O.)
		17			W	

(1) conjugation

(3) transduction

(2) transformation

(4) All of the above

	(3) capacity of as DNA to hybridize with specimens	a protein sequence present in test
	(4) capacity of ds DNA to hybridize with specimens	a protein sequence present in test
114.	. Coliform bacteria are	* .
	(1) Gram negative (2)	non-spore forming
	(3) rod shaped (4)	All of the above
115.	. In the lac operon, the enzyme permease i	s coded by
	(1) Jan 7	ac A (4) lac i
116.	. Regulation of gene expression by attenuat	ion is a feature seen in
	(1) to an	ra operon (4) lac operon
117.	Class II MHC are expressed on	
	(1) R-cells	acrophages
	(3) dendritio pelle	ll of the above
(332)	90	8

	the other is	D 27	-	e .
S 3	(1) Arginine		(2) Aspartic acid	
	(3) Threonine		(4) Tryptophan	
120.	During DNA repli	cation in bacteria,	Single Stranded B	inding (SSB) proteins
	(1) monomers	(2) dimers	(3) trimers	(4) tetramers
121.	The first algal vir	us among the gene	ra cyanobacteria w	as named
•	(1) LPP-4	(2) LPP-8	(3) LPP-6	(4) LPP-1
122.	RecA, an enzyme as a	required during rec	combination in bact	eria, can also function
	(1) integrase	(2) protease	(3) galactosidase	(4) exonuclease
123.	Tumour formation	n in cancer is an o	utcome of	
	(1) transformation	n of a cell	Ser.	
(2)	(2) immortalization	on of a cell	. 3	e e
	(3) transformation	n and immortalizat	ion of a cell	e e
	(4) None of the s	bove	5)	
(332)		23	3	(P.T.O.

	99 ml of wat	er to give a dilution	:100, 1 mi is trans	terred to a flask con	taining
	(1) 10-2	(2) 10 ⁻³	(3) 10-4	(4) 10	
126.	Pyruvate deh	ydrogenase in the	mitochondrial mat	ix converts	
	(1) glucose is	nto glucose-6-phosp	hate	T.	
	(2) glyceralde	hydes-3-phosphate	to pyruvate		
	(3) reduction	of FAD to $FADH_2$	y•		
	(4) pyruvate	into acetyl CoA and	i CO ₂	12	
127.	CO ₂ is assin forming oxale	ilated by phospho acetate in	enolpyruvate carb	xylase in mesophy	l cells
,	(1) C ₃ pathw	ву	(2) photoresp	iration	
	(3) fermentat	ion	(4) C ₄ pathwa	ay	
128.	PS I and PS	Il absorb light of d	ifferent wavelength	due to	
		nce of different solu			
		ocations in the chle		<u> </u>	
	(3) the protei	ns associated with	each reaction cent	er chlorophyll	
				each photosystem	
(332)			24		
			*		

	ting. The theo	retica	al possibility of	this	site repeatin	g itself	is after he	ow many
(1)	64	(2)	256	(3)	1064	. (4)	32	
	erophores are ounts	pro	duced by bac	teria	only when	the fo	ollowing is	s in low
(1)	Cu	(2)	Fe	(3)	Zn	(4)	Mn	
A s	eries of opero	ns c	ontrolled as a	unit	constitute a		÷	
(1)	Regulon	į (2)	Cistron	(3)	Codon	(4)	Riboswito	h
Αn	basic icosahe	dron	is a symmetri	c str	ucture conta	uining		
(1 <u>)</u>	18 faces and	8 ve	rtices	(2)	20 faces an	d 12 v	ertices	
(3)	28 faces and	16 v	rertices	(4)	32 faces and	d 20 v	ertices	•*
Аc	ommon isotop	e of	iodine used in	rad	ioimmunoass	ay is		
(1)	100 I	(2)	125]	(3)	¹⁵⁰ [(4)	175 [
			25	*1			100	(P.T.O.)

131.

132.

133,

134.

	replication is a			*		
	(1) methylase	(2) DNA gyrase	(3)	primase		
137.	Characteristic fea	ture(s) of adaptive	imm	unity is		
	(1) antigen specif	icity	(2)	self-nonself recognition		
	(3) immunologic	memory	(4)	All of the above		
138.	The most abunda	nt rare gas in the	atm	osphere is		
	(1) Xe	(2) Ar	(3)	He (4) Ne		
139.	Lipoproteins, glyc	oproteins, flavopro	teins	are all examples of		
	(1) peptides		(2)	prosthetic groups		
	(3) conjugated pr	oteins	(4)	metalloproteins		
140.	Fungi differ from	algae in being				
	(1) achierophyllous and autotrophic					
	(2) chlorophyllous	and autotrophic	21			
	(3) chlorophyllous	and saprophytic				
	(4) achlorophyllou	is and heterotroph	ic	,		
(332)		26	5			

•	(4) multiplicity of	the genetic code	*	# # # # # # # # # # # # # # # # # # #	*		
142.	The bacteria causing anthrax was discovered by						
	(1) Koch	(2) Pasteur	(3)	Fleming	(4) Jenner		
143.	Immunologically as membrane recepto				bind to antigen spe	cific	
	(1) epitopes	(2) paratopes	(3)	CDRs	(4) TLRs		
	14 O					8	
144.	Reactions involving transfer of electrons are catalyzed by						
	(1) hydrolases	Ĩ	(2)	lyases		0.	
	(3) transferases	a	(4)	oxido-reducti	ases		
	16						
145.	The group firmicutes includes bacterial species which are						
	(1) Gram +ve		(2)	Gram -ve			
	(3) acid fast		(4)	None of the	above		
(332)	is .	27		*	(P.	T.O.)	

•	(4) None of the above						
147.	Cyanophages were discovered by						
	(1) F. W. Twort and F. d'Herelle (2) Safferman and Morris						
	(3) Robert Koch (4) Benda						
148.	Number of moles of CO ₂ in 16 g of O ₂ is						
	(1) 0·1 mole (2) 0·2 mole (3) 0·4 mole (4) 0·5 mole						
149,	Two enzymes which are unique to the glyoxalate cycle are						
(1) isocitrate lyase and malate synthase							
	(2) malate dehydrogenase and isocitrate lyase						
	(3) malate synthase and malate dehydrogenase						
(4) malate synthase and citrate synthase							
150.	50. CAP, the Catabolic Activator Protein, has a role in the expression of the						
	(1) lac operon (2) trp operon (3) ara operon (4) his operon						

	20						
	D/5(332)—2300						

अभ्यर्थियों के लिए निर्देश

- प्राची प्रची प्रवासिक कार्या अपराप्त के अपराप्त के अपराप्त कार्या कार्या
- 3. उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूस रित्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दे। जडौं-जडौं आवश्यक हो वहाँ प्रश्न-पुस्तिक। का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ॰ एम॰ आर॰ पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक सं॰ और ओ॰ एम॰ आर॰ पत्र सं॰ की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-यत्र की सम्बन्धित पंक्ति के सामने दिये गये वृक्त को उत्तर-यत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गावा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों एर शून्य अंक दिये जायेंगे।
- 11. एक कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल *ओ०एम०आर० उत्तर-पत्र* परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
- 14. यदि को त साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होग