M. Sc Am Applied Microbiology

16P/292/9

	Question Booklet No							
	(To	be filled ι	ip by the c	andidate	by blue /	black ball-point p	oen)	
Roll No.						20		
Roll No.								
(Write the d Serial No. o	igits in w	ords)		<i></i>	14			
Serial No. o	f OMR A	nswer Sh	eet	(4				
Day and Da	te					(Signature	e of Invigilator)	•

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the OMR Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR sheet No. on the Question Booklet.
- 7. Any changes in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfairmeans.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गये हैं।]

Total No. of Printed Pages: 30

No. of Questions: 150

Time	$: 2\frac{1}{2}$	Hours]						[Full	Marks : 450
Note:	(1)	Attempt as m	any questic	ns as y	ou o	can. Ea	ch ques	tion carrie	s 3 (Three)
		marks. One m	ark will be	deduct	ed f	or each	incorre	ct answer.	Zero mark
		will be awarde	ed for each u	ınattem	pted	questi	on.		
	(2)	If more than o	ne alternati	ve answ	ers s	seem to	be appr	oximate to	the correct
		answer, choos					,		
		12							
1.	The calle	forced deposited:	tion of airbo	orne par	rticle	s usua	lly on a	solid agar	surface is
	(1)	Deposition			(2)	Impa	ction		
	(3)	Sedimentation			(4)	Splitt	ing		
2.	Bac	terial extracellu	lar polymers	s presen	t in l	biofilm	s are kno	own as :	
	(1)	Glycocalyx			(2)	Epica	lyx		
	(3)	Calyptra			(4)	Calyx			
_		•							
3.	Less	than 1% sunlig	th is presen	t in whi	ch o	f the fo	llowing 2	zones ?	
	(1)	Littoral	(2) Benthio		(3)	Profu	ndal	(4) Limi	netic
4.	Intra	acellular vesicle	s are found	in :					
		Endomycorrhiz			(2)	Ector	ycorrhiz	za	
	(3) 1	Ectendomycorri	hiza		(4)	None	of the ab	ove	
		101 10	· ·	(3)				*	P. T. O.

5.	Methane is the central molecule of which cycle:		
	(1) Nitrogen	(2) Phosphorus	
	(3) Carbon	(4) Sulphur	
6.	Purple and green phototrophic bacteria	are isolated by :	
	(1) Winogradsky column		
	(2) Sepharose column		
	(3) Blue sepharose column		
	(4) Concanavalin A column		
7.	A free living aerobic and non-photosyn	thetic nitrogen fixing bacterium is:	
	(1) Anabaena	(2) Clostridium	
	(3) Azotobacter	(4) Rhizobium	
8.	Bacteria involved in two step conversion	n of ammonia into nitrate are :	
	(1) Azotobacter and Nitrosomonas		
	(2) Pseudomonas and Nitrobacter		
	(3) Azotobacter and Achromobacter		
	(4) Nitrosomonas and Nitrobacter	40 81	
9.	This organism causes infection of the u	rinary tract :	
	(1) Giardia	(2) Trypanosoma	
	(3) Plasmodium	(4) Trichomonas	
	(4))	

10.	Opportunistic infections often are cau	sed:
	(1) By commensals	
	(2) Due to hosts weakened immune 's	ystem
	(3) Due to reduction in indigenous m	icrobiota
	(4) All of the above	,
11.	Hydrothermal vents are also known a	as:
	(1) Black smokers	(2) White smokers
	(3) Black vents	(4) None of the above
12.	Water fit for human consumption is to	echnically called :
	(1) Potable	(2) Portable
	(3) Polluted	(4) Planktonic
13.	Fossilized microbial mats are known a	as:
	(1) Stromatolites	(2) Stalagtites
	(3) Stalagmites	(4) Stromata
14.	The CH ₄ released into the atmosphere	e is the highest from which source :
	(1) Ruminants	(2) Termites
	(3) Paddy fields	(4) Natural wetlands
15.	Anaerobic sulphate reduction is carrie	d out by :
	(1) Thiobacillus	(2) Desulfovibrio
	(3) Desulfuromonas	(4) Beggiatoa
	(5)	

10.	. Where-organisms that can multiply at 100-108 C would mostly be:		
	(1) Hyperthermophilic archaea	(2)	Thermophilic subaerial fungi
	(3) Thermophilic bacteria	(4)	Marine protozoa
17.	Transformation experiments were first	perf	ormed in :
	(1) Escherichia coli	(2)	Salmonella typhi
	(3) Diplococcus pneumoniae	(4)	Pasteurella pestis
18.	The fibrillar nature of the bacterial geno	mic	DNA is due to the presence of :
	(1) Proteins HU and H-NS	(2)	Proteins A and D
	(3) Proteins H3A and H3B	(4)	Protein RecA
19.	The is where organisms that plants are growing.	are	found on and in the aerial surface
	(1) Rhizosphere	(2)	Phyllosphere
	(3) Rhizoplane	(4)	Desert crust
20.	Which of the following functions is attri	ibute	ed to growth promoting bacteria?
	(1) Inhibit competeting bacteria by pro	duci	ng antibiotics
	(2) Promote plant growth by producing		
	(3) Decompose the organic material elements available to the plant again	ls se in	ecreted by the plant making the
	(4) All of the above		
,	(6))	

21.	The function of the enzyme primase during DNA replication is to :			ation is to:
	(1) Synthesize DNA primer			
	(2) Synthesize RN	NA primer		
	(3) Induce DNA	supercoiling		
	(4) Induce DNA	relaxation		
22.	When it introduces a tumour in plants, Agrobacterium introduces			
	(1) m-RNA	· 6	(2) Ti plasmid	
	(3) c DNA		(4) T DNA	
23.	Methanotrophic b	acteria :		
	(1) Oxidize metha	ane gas		
	(2) Are responsible for green house effect			
	(3) Produce methane gas			
	(4) Utilise methar	ne gas as electron so	ource for reduction p	process
24.	The consensus seq	uence of the Pribno	w box is:	
	(1) TTGACA	(2) CGGCCG	(3) TGGGCC	(4) TATAAT
25.	One of the proteins	s required for the te	rmination of transc	ription is:
a a	(1) Rho	(2) Sigma	(3) CAP	(4) p102
		(7)		
				P.T.O.

26.	The function of recognizing both the amino acid and the specific tRNA for that amino acid rests with :		
	(1) Aminoacyl t-RNA synthetase	(2) Chaperonin	
	(3) Peptidyl transferase	(4) Selenocysteine	
27.	Foods packaged in plastic for microway	ing are :	
	(1) Dehydrated	(2) Autoclaved	
	(3) Freeze dried	(4) Packaged aseptically	
28.	Which type of radiation is used to prese	rve foods?	
	(1) Ionising	(2) Non-ionising	
	(3) Radiowaves	(4) Microwaves	
29.	The approximate number of proteins ribosomes is:	in the small subunit of prokaryotic	
	(1) 10 (2) 21	(3) 32 (4) 39	
30.	Halophiles grow in concentrated salt so	lution due to:	
	(1) Bacteriorhodopsin		
81 - K	(2) Branched hydrocarbon chain in pho	ospholipids	
	(3) Active absorption		
	(4) Accumulation of KCI		
	(8)	

31.	Which of the following reaction is an oxidation carried out by Thiobaculus ferroxidans:					
	(1) Fe ²⁺	Fe ³⁺	(2)	Fe ³⁺	Fe ²⁺	
	(3) Cu ²⁺	Cu ³⁺	(4)	Fe ⁰	Cu ⁰	
32.	What type of ferme	entation is used to pr	rodu	ce yoghurt ?		
	(1) Lactic acid ferr	nentation	(2)	Propionic acid		
	(3) Butane diol fer	mentation	(4)	Mixed acid ferr	mentation	
33.	UGA is a stop coo	don in the universal	gen	etic code. Howe	ever, in Mycopl	asma,
	(1) Glycine	(2) Arginine	(3)	Leucine	(4) Tryptoph	an
34.	Specialized transd	uction was first di	iscov	ered with whic	ch of the follo	wing
	(1) gal	(2) pro	(3)	lac	(4) his	
35.	The approximate u	pper limit of DNA t	hat c	an be cloned in a	a cosmid vector	is:
850	(1) 15 kbp	(2) 20 kbp	(3)	35 kbp	(4) 45 kbp	
36.	The first primer to	primer product in a	PCR	appears in which	ch cycle :	
	(1) First	(2) Second	(3)	Third	(4) Fourth	
37.	Which of the follow	ving is the correct co	mbir	nation ?		
	(1) Low BOD, low	DO	(2)	High BOD, high	h DO	
	(3) Low BOD, high	n DO	(4)	None of the abo	ve	
		(9)				
		2 2			Ρ.	T.O.

38.	. 2, 4, 5- T is a herbicide, the persistence of which in soil is approximately:			
	(1) 20 days	(2) 20 weeks	(3) 20 months (4) 20 years	
39.	The plasmid found	in Agrobacterium rh	zogenes is :	
	(1) Ti	(2) Ri	(3) pUC (4) YAC	
40.	A nutritional mutat	nt with the requiren	ent of a specific growth factor is k	known
	(1) Auxotroph		(2) Necrotroph	
	(3) Prototroph		(4) Autotroph	
41.	Which of the follow	ving mutagens is a b	se analogue ?	
	(1) Nitrous acid		(2) Ethidium bromide	
	(3) 5-Bromouracil		(4) Nitrosoguanidine	
12.	DNA damage indu	ces the protease fund	tion of which protein:	
	(1) Lex A		(2) Rec A	
	(3) Topoisomerase		(4) Replicase	
43.	Knallgas bacteria ca	an oxidize :	*	
	(1) Sulphur	(2) Methane	(3) Hydrogen (4) Ammoni	a
44.	Selman Waksman i	s credited with the c	iscovery of :	14
	(1) Penicillin		(2) Streptomycin	
	(3) Chlorampheni	col	(4) Cycloheximide	
		(10		

45.	Three distinct phylogenetic lineages of Woese have been identified through:	
	(1) mRNA sequences (2) rRNA sequences	
	(3) Protein sequences (4) tRNA sequences	
46.	Koch's Postulates was an outcome of work with:	
	(1) Polio (2) Tuberculosis	
	(3) Anthrax (4) Small pox	
47.	The first microbiologists to study the role of non-pathogenic microbes is environment were:	in
	(1) Ivanowsky and Beijerinck (2) Pasteur and Koch	
	(3) Winogradsky and Beijerinck (4) Metchnikoff and Kitasato	
48.	Porin proteins are found in :	
4	(1) Cell wall of Gram positive bacteria	
	(2) Cell wall of Gram negative bacteria	
	(3) Outer membrane of Gram negative bacteria	
	(4) Periplasmic space of Gram negative bacteria	
49.	A capsule is similar to pili because both:	
	(1) Are made of protein	
	(2) Can represent virulence factors	
	(3) Are endotoxins	
	(4) Are made of polysaccharides	
	(11)	•

50.	The group firmicutes does not include	l.
	(1) Streptococcus (2) Lactobacillus	(3) Clostridium (4) Pseudomonas
51.	Prokaryotes differ from mitochondria a	nd chloroplasts in :
	(1) Having circular DNA	
	(2) Reproduction by binary fission	
	(3) Making all of their proteins	
	(4) Making some proteins	
52.	The counterstain used in Gram stain pro	ocedure is :
	(1) Safranin (2) Iodine	(3) Crystal violet (4) Carbol fuchsin
53.	Strain O157: H7 of E. coli has been ident	iffed on the basis of:
	(1) Lipid A	(2) O-polysaccharide
	(3) Peptidoglycan	(4) Flagellar antigen
54.	In Pseudopeptidoglcan, N-acetyl murar	nic acid is replaced by :
	(1) N-acetyl glucosamine	
	(2) D-glutamic acid	
	(3) L-lysine	
į.	(4) N-acetyl talosamine uronic acid	
55	When comparing bacterial and ar	chael cell membranes only bacterial
55.	membranes:	
	(1) have ether linkages	(2) have membrane proteins
		(4) are fluid
	(3) have phospholipids (12)	H .
	(12	<i>!</i>

56 .	Crescentin is a homolog of:	
	(1) ribosomal protein	(2) flagellar protein
	(3) cytoskeletal protein	(4) None of these
57.	Which of the following bacteria does	not undergo transformation in nature?
	(1) Escherichia Coli	(2) Azotobacter
	(3) Bacillus	(4) Streptococcus
58.	Plasmid carrying genes for degradat	ion of octane is found in :
	(1) Rhizobium	(2) Pseudomonas
	(3) Agrobacterium	(4) Staphylococcus
59.	Which is true of an Hfr cell?	
	(1) Has a chromosomally integrated	F factor
	(2) Lacks pili	
	(3) Does not have genes for conjugat	tive transfer of plasmid
	(4) Cannot conjugate with F-	
60.	Grinding and mixing of food such as	hambuger and sausages :
	(1) Increases food surface area	60 · · · · · · · · · · · · · · · · · · ·
	(2) Alter cellular structure	
	(3) Distribute contaminating microo	rganisms throughout the food
	(4) All of the above	
	(13	3)

61.	Which of the following is not an intrinsic factor in food spoilage?				
	(1) pH	(2) Moisture content			
	(3) Available nutrients	(4) Temperature			
62.	The sequence most likely to be recognized by <i>Eco RI</i> is :				
	(1) AATTCG (2) AACCGG	(3) GAATTC (4) GCTTCG			
63.	Competence is a term associated with:				
	(1) Conjugation				
	(2) Specialized transduction				
	(3) Generalized transduction				
	(4) Transformation	at the state of th			
64.	Specialized transduction does <i>not</i> invol	olve:			
	(1) Prophage	(2) Virulent phase			
	(3) Recepient cell	(4) Lysed host cell			
65.	Individual protein subunit of a virus is	s called :			
	(1) Capsid (2) Capsomer	(3) Peplomer (4) Nucleocapsid			
66.	A clear zone within a cloudy lawn	of bacterial cells due to bacteriophage			
	infection is commonly called:				
	(1) Negri body	(2) Syncytia			
	(3) Inhibition zone	(4) Plaque			
	(14)				

67.	Neurological degenerative disease with sponge like holes in the brain hav been associated with:		
	(1) Prions (2) Viroids	(3) Viruses	(4) Bacteria
68.	Protein only hypothesis proposed by Protein	rusiner was for :	
	(1) Virusoids (2) Viroids	(3) Prions	(4) Enzymes
69.	HIV normally infects:		
9	(1) T-helper cells	(2) CD4 + cells	
	(3) Macrophages	(4) All of the abo	ve
70.	A blister-like lesion on the scalp is co- fungal infection :	ommonly associated	d with the following
	(1) Candidiasis	(2) Crptococcosis	.
	(3) Dermatophytosis	(4) Histoplasmos	is
71.	An intermediate host is:		
	(1) where parasite asexual cycle occurs	E.	
	(2) always a nonhuman host		
	(3) always some form of insect vector		
	(4) where parasite sexual cycle occurs		
72.	AZT interferes with:		
	(1) Virus entry	(2) Reverse transc	cription
	(3) Virus uncoating	(4) Proteolysis	
	(15)		P.T.O.

73.	To synthesize one hexose molecule from 6 CO_2 by Calvin cycle, there is a requirement of :
	(1) 10 NADPH + 16 ATP
	(2) 18 NADPH + 12 ATP
	(3) 16 NADPH + 10 ATP
	(4) 12 NADPH + 18 ATP
74.	Green sulphur bacteria fix CO ₂ by :
	(1) Reverse citric acid cycle
	(2) Hydroxy propionate pathway
	(3) Calvin cycle
	(4) Entner-Doudoroff pathway
75.	The electron flow in biological nitrogen fixation follows this sequence:
	(1) Pyruvate - Dinitrogenase reductase - N2 - Dinitrogenase
	(2) Pyruvate - Dinitrogenase reductase - Dinitrogenase - N2
	(3) Dinitrogenase - Dinitrogenase reductase - Pyruvate - N2
	(4) N2 - Pyruvate - Dinitrogenase - Dinitrogenase reductase
76.	The nif regulon in Klebsiella pneumoniae is concerned with:
	(1) Nitrate reduction (2) Nitrite reduction
	(3) Nitrogen fixation (4) Denitrification
	(16)

77.	Nodulation and the development of a microaerophilic environment to facilitate nitrogen fixation are characteristics of which genus:		
	introgen iixation are characteristics o	which genus :	
	(1) Agrobacterium	(2) Pseudomonas	
	(3) Escherichia	(4) Rhizobium	
78.	Common microorganisms which the includes:	emselves constitute an industrial produc	
	(1) Baker's yeast (Saccharomyces cerev	isiae)	
	(2) Rhizobium	Six.	
	(3) Bacillus thuringiensis		
	(4) All of the above		
79.	Fts Z ring has a role in:		
	(1) Cell division	(2) DNA replication	
	(3) Translation	(4) Protein folding	
80.	α , β , γ , δ , ϵ , are subdivisions within :		
	(1) Archaea	(2) Proteobacteria	
	(3) Firmicutes	(4) Mollicutes	
81.	Rabies, Polio, West Nile fever are mos	t recognized diseases of :	
	(1) Lymphatic system	(2) Respiratory system	
	(3) Nervous system	(4) Skeletal system	

82.	An enzyme that adds a phosphoryl group to a compound is:			
	(1) Kinase	(2) Phosphatase		
	(3) Peptidase	(4) Oxido-reductase		
83.	Inducers and repressors of enzyme ind	uction are collectively referred to as :		
	(1) Moderators (2) Modifiers	(3) Effectors (4) Reducers		
84.	Hepatitis B virus belongs to:			
	(1) Hepadnaviridae	(2) Flaviviridae		
	(3) Herpesviridae	(4) Retroviridae		
85.	Heme group in Haemoglobin is an exar	mple of :		
	(1) Coenzyme	(2) Prosthetic group		
	(3) Cofactor	(4) Holoenzyme		
86.	Enzyme activity can be regulated by :			
	(1) Control of enzyme availability			
	(2) Control of enzyme activity			
	(3) Both (1) and (2)			
	(4) Only (2)			
87.	Energy contained in a photon is given b	py:		
	(1) $E = h\lambda$ (2) $E = hc/\lambda$	2 2 2		
88.	In aerobic photosynthesis the molecule	which is protolyzed is:		
50.	(1) CO_2 (2) $C_6H_{12}O_6$	(3) Chlorophyll (4) H ₂ O		
	(18)			

89.	The number of Mai	nganese ions forming	g the Oxygen ev	olving complex are :
	(1) 2	(2) 4	(3) 8	(4) 16
90.	Transport of electro	ons from Cytochrom	e b ₆ f to PSI is vi	a: .
	(1) Quinone	9	(2) NADP	
	(3) Phaeophytin	6	(4) Plastocyar	nin
91.	Cellulose differs fro	om glycogen and sta	rch in having g	ycosidic linkage :
	(1) α-1, 3	(2) β-1, 3	(3) α-1, 4	(4) β-1, 4
92.	RNA differs from I	ONA in having :	3	
	(1) OH group on the	ne 2' carbon of pento	se sugar	
	(2) Nitrogen base (on the 1' carbon		
	(3) Uracil instead of	of Thymine		4
	(4) Both (1) and (3)			
93.	Which of the follow	ring statements are to	rue of Enantion	ners?
	(1) They are optica	lisomers		
	(2) They have the s	ame molecular and	structural form	ılas
		images of one anoth	ner	
	(4) All of the above		· · · · · · · · · · · · · · · · · · ·	

94.	During protein denaturation the following does not occur:
	(1) Polypeptide chains unfold
	(2) Primary structure is not retained
	(3) Higher order structure of proteins is destroyed
	(4) Hydrophobic regions become exposed and stick together to form
	aggregates
95.	Which statement is <i>not</i> true of a bacterial endospore?
	(1) Endospores contain dipicolinic acid
	(2) The endospore core is dehydrated
	(3) Endospore core contains high level of SASPs
	(4) SASPs bind to ribosomes present in the endospore core and prevent
	translation
96.	Taq and Pfu are examples of :
	(1) Protease (2) RNA polymerase
	(3) DNA polymerase (4) Lipase
s7.	Isoniazid interferes with the synthesis of:
	(1) Mycolic acid (2) Folic acid (3) Protein (4) Nucleic acid
98.	Bacterial resistance to Penicillin is due to :
	(1) Efflux
	(2) Alteration of target
	(3) Development of resistant biochemical pathway
	(4) Inactivation of antibiotic
	(20)

99.	An example of cytolytic toxin is:	
	(1) Diphtheria toxin	(2) Botulinum toxin
	(3) Staphylococcal α toxin	(4) Tetanus toxin
100.	Gellan, pullulan, alginate and cure	dlan are :
	(1) Polysaccharides	(2) Antibiotics
	(3) Polyesters	T
	(o) Polyesters	(4) Lipids
101.	Continuous feed during fermentat	tion is used to maintain:
	(1) Temperature	(2) Water level
	(3) Product concentration	(4) Substrate concentration
102.	To be suitable for industrial use a r	microorganism should:
	(1) Be generally stable	
	(2) Be capable of growth and prod	duct fermentation in large scale culture
×		oduct in a relatively short period of time
	(4) All of these	
103.	The term primary metabolite refers	s to:
	 A product that is produced du at or near stationary phase. 	uring the end of the growth phase, frequently
	(2) A product that is produced dur	ring the primary stage of growth.
	(3) The major waste product produ	uced during the growth of a culture.
	(4) All of the above	
	(21) P.T.O.

104.	Breakbone feve	er is associated with:		
	(1) AIDS	(2) Dengue	(3) Hepatitis	(4) Yellow fever
105.	Hepatitis A an	d E are transmitted b	y:	
	(1) Urogenital	tract		
	(2) Contact wi	th body fluids	-	
	(3) Gastrointe	stinal tract		340
	(4) Respirator	y tract		
106.	Which of the fo	ollowing is an examp	le of a primary metal	polite?
٠	(1) Ethanol	(2) Penicillin	(3) Erythromyo	cin (4) Tetracycline
107.	In a typical fer	menter the function o	of sparger is :	
	(1) Provide st	eam in the fermenter	during sterilization	
	(2) Provide ac	dditional nutrients so	that growth may ens	sure
	(3) Provide fo	or proper cooling of th	ne fermenter	
		source of small air bu		ate the medium
108.		i is probably the a quantity. Its major u		tured by fermentation
	(1) As flavou	r enhancer		
	(2) As nutriti	onal supplement		
	(3) As raw m	aterial for animal fee	d	
	(4) As starter	material for asparta	me	
			(22)	

109.	The major use of microbial derived proteases is:				
	(1) Chemical modification of food additives				
	(2) An animal feed				
	(3) As an isomerase during production of high fructose corn syrup				
	(4) As an additive of laundry detergents				
110.	Nitrogenous fertilizers disrupt ecosystem structure and function by :				
	(1) Causing formation of nitrosamine carcinogens				
	(2) Promoting heterotrophic growth causing imbalance in carbon dioxide levels				
	(3) Causing more antibiotic producing to grow and produce antibiotic which stunt growth of plants				
	(4) Reducing the number of Nitrogen fixing bacteria in soil				
111.	111. The manner in which the hydrophobic lipid tails are attached to glycerol in the cytoplasmic membrane is different in:				
6					
	(1) Bacteria and Archaea (2) Bacteria and Eukarya				
	(3) Bacteria and Cyanobacteria (4) Archaea and Methanogens				
112.	Which among these is a method of vinegar production?				
	(1) Orelans method (2) Bubble method				
	(3) Trickle method (4) All of the above				
113.	Production of which of the following is anaerobic process:				
	(1) Ethanol (2) Glutamic acid (3) Citric acid (4) Acetic acid				
	(23) P.T.O.				

114.	Which of the following gives the correct zonal sequence in seas?				
	(1) Bathyal, abyssal, intertidal, neritic				
	(2) Neritic, intertidal, bathyal, abyssal				
	(3) Abyssal, neritic, intertidal, bathyal				
	(4) Intertidal, neritic, bathyal, abyssal				
115.	Which of the following provides an assessment of the numbers of aerobic and facultatively anaerobic bacteria in water?				
	(1) Anaerobic plate count				
	(2) Heterotrophic plate count				
	(3) Colony forming units				
	(4) BOD				
116.	The biochemistry of production is most closely related to that of bread leavening:				
	(1) Ethanol (2) Glutamic acid				
	(3) Citric acid (4) Ascorbic acid				
117.	Viral genome with negative strand RNA has:				
	(1) RNA in the form of messenger RNA				
	(2) RNA complementary to messenger RNA				
	(3) Single stranded RNA				
	(4) Segmented RNA				
	(24)				

118.	Viroids can be de	estroyed by :		
	(1) DNAase		(2) Protease	
	(3) RNAse		(4) Both (1) and	1 (3)
119.	Wort is a precurs	or of:		,
	(1) Beer	(2) White wine	(3) Brandy	(4) Red wine
120.		to eliminate spoilage e spoiled. This may be		ng canning, sometime
	(1) Spoilage befo	re canning		
	(2) Underprocess	sing during canning		
		ontaminated water th	rough can soams d	uring gooling
	(4) All of the abo		rough can seams u	uring cooling
	(1) 1111 01 1110 1100	**		
121.	The effectiveness food:	of many chemical	preservative depe	ends primarily on the
	(1) Temperature		(2) pH	
	(3) Water content	ŧ	(4) Acidity	
		8		
122.	Which of the follo	owing refers to the a	ddition of microor	ganisms to the diet in
	order to provide h	nealth benefits beyond	d basic nutritive va	lue ?
	(1) Adjuvants	(2) Prebiotics	(3) Probiotics	(4) Symbionts
123.	Which of the follow	wing is <i>not</i> an examp	le of non-perishabl	le foods ?
	(1) Cereals	(2) Rice	(3) Pulses	(4) Milk
		(25)		
				P.T.O.

(1) lac operon (2) trp operon (3) mal operon (4) arg operon				
a_{w} , which is also referred to as water activity which governs the spoilage of food by micro-organisms, is commonly interpreted as:				
(1) Water content of the food				
(2) Sugar content of the food				
(3) pH of the food				
(4) Nitrogen content of the food				
Which of the following test is done for testing the quality of milk?				
(1) Phosphatase test				
(2) Methylene Blue Reduction Test (MBRT)				
(3) Multiple Tube Fermentation Test				
(4) All of the above				
The common bacteria responsible for Botulism is:				
(1) Leuconostoc species				
(2) Salmonella species				
(3) Clostridium species				
(4) Staphylococcus species				
Sauerkraut is a fermented product of :				
(1) Soyabeans (2) Coconut				
(3) Cassava				
(26)				
	food by micro-organisms, is commonly interpreted as: (1) Water content of the food (2) Sugar content of the food (3) pH of the food (4) Nitrogen content of the food Which of the following test is done for testing the quality of milk? (1) Phosphatase test (2) Methylene Blue Reduction Test (MBRT) (3) Multiple Tube Fermentation Test (4) All of the above The common bacteria responsible for Botulism is: (1) Leuconostoc species (2) Salmonella species (3) Clostridium species (4) Staphylococcus species Sauerkraut is a fermented product of: (1) Soyabeans (2) Coconut (4) Cabbace			

124. Which of the following is *not* a negatively controlled operon?

129.	Which among these is <i>not</i> an example of Single Cell Protein (SCP)?			
	(1) Chlorella	(2) Spiruli	па	
	(3) Cellulomonas	(4) Pseudo	nonas	
130.	Arrange the following groups of mi	cro-organisms	in descending order	of their
	(1) Bacteria, Fungi, Protists, Nemato	odes, Viruses		
	(2) Bacteria, Protists, Viruses, Nematodes, Fungi			
	(3) Bacteria, Fungi, Viruses, Nemato	des, Protists		
	(4) Bacteria, Fungi, Viruses, Nemato	odes, Protists		: 64
131.	Because the soil primarily is an environment, the elements such as Carbon, Nitrogen, Sulphur and Iron will tend to be in the state in the soil.			
	(1) Aerobic, oxidized	(2) Aerobie	c, reduced	
	(3) Anaerobic, oxidized	(4) Anaero	bic, reduced	
132.	For Lambda phage to maintain lyso except:	geny, the follow	ving events should	happen
	(1) Integration of lambda genome in	to host chromos	some	
	(2) Expression of C II and C III prote	ins		
	(3) Prevention of late protein produc	tion		
	(4) Synthesis of cro protein in high ar	nounts		
	(27)		P.T.O.

133.	The terms rooted, unrooted and nodes are commonly associated with:		
	(1) Phylogenetic tree	(2) Cladistics	
	(3) Cladogram	(4) All of the above	
134.	is the process in which micro-organisms are used as a food source resulting in nitrogen and phosphorus mineralization.		
	(1) Eutrophication	(2) Homeostasis	
	(3) Nitrogen fixation	(4) Microbivory	
135.	A microbial community that develops surface is called:	in low areas and retained on the soil	
	(1) Zooglea (2) Mycorrhizae	(3) Microfilm (4) Desert crust	
136.	Which of the following genera synthesizes Nod factors in order to activate a plant to allow development of infection thread?		
	(1) Agrobacterium	(2) Pseudomonas	
	(3) Frankia	(4) Rhizobium	
137.	The nitrogen-fixing form of the Rhizobia	um is called :	
	(1) Bacteroid	(2) Symbiosome	
g 7	(3) Mycorrhiza	(4) Infection thread	
138.	Which of the following genera possess	a tumour inducing plasmid?	
	(1) Agrobacterium	(2) Rhizobium	
	(3) Pseudomonas	(4) Frankia	
	(28		

139.	Addition of nitrogen containing fertil soil:	izers affects gas exchange process in the
	(1) Resulting in release of NO and N ₂ 6	O which are green house gases
	(2) Causing methane gas to be produc	red
	(3) Assimilation of NO ₃ by the plants	
	(4) Causing antibiotic production resistance	in bacteria which leads to antibiotic
140.	The symbiotic association of plants a described by:	and fungus called mycorrhiza was first
	(1) De Bary	(2) Sergei Winogradsky
	(3) A. B. Frank	(4) A. M. Ross
141.	DDT is an example of Persistent Organ degraded by certain bacteria, select the	nic Pollutants (POPs) but is known to be appropriate one:
	(1) Phanerochaete chrysoporium	(2) Trichoderma viride
	(3) Aspergillus flavus	(4) All of the above
142.	The spoilage of wine is due to acidifica	tion, which is caused due to presence or .
	(1) Gluconobacter	(2) Acetobacter
	(3) Lactobacillus	(4) All of the above
143.	Who is referred to the first	
140.	Who is referred to as the father of antib	
	(1) Sewall Wright	(2) Robert Koch
	(3) Alexander Fleming	(4) Weismann
144.	Roquefort, Cheddar, Emmentaler (Swis	s), Camembert are types of
	(1) Cheese (2) Butter	(2) 3 (1)
	(29)	(1) Hotelins
		P.T.O.

145.	Kelli is collinolity known as:		
	(1) Fermented milk	(2)	Fermented cereals
	(3) Fermented whisky	(4)	Fermented beer
146.	Mycotoxins are example of:		
	(1) Primary metabolite		4
	(2) Secondary metabolite		a' #
	(3) Tertiary metabolite		
	(4) Both an example of secondary and	tertia	ary metabolite
147.	Aflatoxin, Ochratoxin, Sterigmatocystin	are	different types of:
	(1) Aspergillus toxins	(2)	Fusarium toxins
	(3) Penicillium toxins	(4)	Ergot alkaloids
148.	Which of the following is found in milk	?	
	(1) Vibrio (2) Lactobacillus	(3)	Pseudomonas (4) Amoeba
149.	Wood smoke is sometimes used in flav the presence of:	ouri	ng and preservation of foods due to
	(1) Pyragallol	(2)	Catechol
	(3) Phenols and cresols	(4)	All of the above
150	12D treatment is commonly referred to	as:	
150.			Fulva cook
50.0	(1) Botulinal cook	(2)	and the second s
	(3) Coagulans cook	(4)	Stearothermophilus cook
			* *

अभ्यर्थियों के लिए निर्देश

(इस पुरितका के प्रथम आवरण-पृष्ठ पर तथा ओ०एम०आर० उत्तर-पत्र के दोनों पृष्ठों पर केवल *नीली।काली बाल-पाइंट पेन* से ही लिखें)

- 1. प्रश्न पुरितका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुरितकां प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- 3. उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित रथान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ -जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ॰ एम॰ आर॰ पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुरितका पर अनुक्रमांक संख्या और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुरितका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार बाल-प्वाइंट पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिये इस पुरितका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा अंतिम खाली पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओ० एम० आर० उत्तर-पत्र ही परीक्षा भवन में जमा करें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का / की भागी होगा / होगी।