Code No

1971

Set No. – (i)	Question Booklet No.
(To be filled up by the o	ndidate by blue/black ball-point pen)
Roll No.	
Roll No.	
(Write the digits in words)	A 17 \
(Write the digits in words)	2019
Day and Date	(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the OMR Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR sheet No. on the Question Booklet.
- 7. Any changes in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfairmeans.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिन आवरण-पृष्ठ पर दिये गये हैं।]

Total No. of Printed Pages: 32

No. of Questions: 150

^½ Hours]

[Full Marks: 450

- Ti' (1) Attempt as many questions as you can. Each question carries 3 (Three) marks. One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.
 - (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
- 1. If a one dimensional potential of a physical system is $V(x) = \frac{x^2}{2} \frac{x^4}{4}$, the unstable equilibrium of the system would be at:
 - (1) x = 0
- (2) x = +1
- (3) x = -1
- (4) $x = \pm 1$
- **2.** An example of a non-inertial reference frame is when:
 - (1) a frame of reference is stationary w. r. t. the other frame
 - (2) a frame of reference moves with a uniform velocity towards the other reference frame
 - (3) a reference frame moves away from the other reference frame with a uniform velocity
 - (4) a reference frame rotates with a uniform angular velocity w. r. t. the other frame
- **3.** The change in the wavelength of the scattered light in the Compton scattering is equal to the Compton wavelength of the electron when:
 - (1) the deflection angle of photon is $\pi/2$
 - (2) the deflection angle of photon is 0
 - (3) the deflection angle of photon is $\pi/3$
 - (4) the deflection angle of photon is π

4.	The maximum the case of C	um value o Compton sca	f the change in attering is:	n the w	vavelength of t	he attered light in
	(1) 0.024 Å	(2)	0.048 Å	(3)	0.0 Å	(4) 72 Å
5.	Raman scat about :	tering expe	riment is impo	rtant b	pecause it leads	
	(1) the qua	ntum natur	e of light			
	(2) the qua	ntum natur	e of the molecu	ile		
	(3) the qua	ntum natur	e of atom			
	(4) the qua	ntum natur	e of molecule a	s well	as light	
6.	In an electr travel back- equal to:	on-positron to-back. Th	annihilation e e speed of one	experin photo	nent, two photo n w. r. t. the oth	ons are produced ner photon would be
	(1) 2C	(2)	C	(3)	$\frac{2}{3}$ C	(4) $\frac{3}{2}$ C
7.	In a Compto	on scattering	g experiment, th	e recoi	l electron has to	be:
	(1) relativi	stic				
	(2) non-rel	ativistic				
	(3) Someti	mes relativi	stic			a a
	(4) Someti	mes non-rel	ativistic			
0				tric effe	ect, the ejected ϵ	electrons are:
8.		f the times 1				
			non-relativistic			
	\ ,					
	(3) alway	s relativistic				
	(4) most (of the times	stationary		4404 V × 4	11 (0.)
	The de Br	oglie wavel	ength, associate	d with	a light of wave	elength (A) is:
9	1. The de β	($2) \frac{3}{2}\lambda$	(3)	$\frac{2}{3}\lambda$	(4) λ
		· v		4)		

	(5)	0.000
	(3) 0.511 MeV	(4) 0.511 eV
23	(1) 0.511 GeV	(2) 0.511 KeV
15.	The energy equivalent of the root mass	of a position is :
	(3) $1.17 \times 10^{-17} \text{ KeV}$	(4) $1.17 \times 10^{-17} \mathrm{eV}$
	(1) $1.17 \times 10^{-17} \text{ ergs}$	(2) 1.17×10^{-17} joules
14.		h equal to 2Å and its angle of deflection ectron in the Compton scattering would
	(3) 5380 nanometer	(4) 5380 angstrom
	(1) 5380 meter	(2) 5380 micrometer
13.	The energy required to dislodge a bout threshold wavelength of the light for the	and electron from Sodium is 2.3 eV. The e photo electric effect to occur is:
	(4) $\approx 7200 \text{ Å and } \approx 20 \text{ Å, respectively}$	
	(3) \approx 6200 Å and \approx 9 Å, respectively	
	(2) \approx 7200 Å and \approx 9 Å, respectively	•
	(1) \approx 6200 Å and \approx 20 Å, respectively	
12.	The de Broglie wavelengths associated	with 2eV photon and electron are :
	(3) 2.77 Micrometer	(4) 1.77 Nanometer
	(1) 2.77 Meter	(2) 1.77 Angstrom
11.	The de Broglie wavelength, associated nearly equal to:	with a neutron at temperature 27°C, is
	(1) Angle $\pi/2$ (2) Angle $\pi/4$	(3) Angle π (4) Angle 2π
10.	In the case of Rutherford scattering, if the of the α -particle would be by the :	ne impact parameter is zero, the deflection

16.	Threshold wavelength of a photon that is capable of generating photoelectric effect in a metal, is :
	(1) the minimal value
	(2) the maximum value
	(3) the average value
	(4) the root square mean value
17.	One of the following is <i>not</i> consistent with the basic concepts of special theory of relativity:
	(1) Maxwell's electromagnetic theory
	(2) Lorentz transformations
	(3) Galilean transformations
	(4) Michelson-Morley experiment
18.	The electric and magnetic fields of Maxwell's theory remain invariant under:
	(1) Gauge transformations
	(2) Lorentz transformations
	(3) Parity transformations
	(4) Galilean transformations
19.	Two electrons move in the opposite directions each with speed 0.9 C. The relative velocity of one with respect to the other is:
	(1) 1.80 C (2) 0.99 C (3) 0.88 C (4) 0.77 C
20.	Rutherford scattering is important because it sheds light on:
	(1) the structure of the molecule
	(2) the size of the molecule
	(3) the quantum nature of the molecule
	(4) the structure of the atom
	(6)

21.	A rigid body is conferedom for this	onstrained to move s system is:		ane. The number	of degrees
	(1) One	(2) Two	(3) Four	(4) Five	
22.	The condition und $q \rightarrow Q = \gamma q + \delta p$,	Her which the following $\rightarrow P = \alpha q + \beta p$ wou	ng transformati ld be canonical	ons (with constan	ts α , β , γ , δ)
	(1) $\alpha\delta - \beta\gamma = 1$	(2) $\alpha \gamma - \beta \delta = 0$	(3) $\alpha \gamma - \beta \delta$		$\beta^2 = 0$
23.	The quark conten	t of a proton is:		r an gran and	
	(1) udd	(2) uud	(3) uuu	(4) ddd	
24.	The ground state	of a deuteron is:		Trade see	
	(1) A pure 3S_1 st	ate			
	(2) A pure 3P_1 sta	ate			
	(3) A mixture of	${}^{3}S_{1}$ and ${}^{3}P_{1}$ states			
	(4) A mixture of 3	3S_1 and 3D_1 states			
25.	According to the r the nucleus $_{19}K^{39}$	nuclear shell-model, would be :	the spin and p	arity of the grour	nd state of
	$(1) \left(\frac{3}{2}\right)^+$	$(2) \left(\frac{1}{2}\right)^+$	$(3) \ \left(\frac{3}{2}\right)^{-}$	(4) $\left(\frac{1}{2}\right)^{-1}$	
26.	Under the Lorent invariant?	z transformations,	one of the fo	llowing does no	t remain
	(1) Rest mass	ž)	(2) Charge		
	(3) Proper time		(4) Total end	ergy	
27.	The phase space tra	njectory of a linear os	scillator, with i	ixed energy, is:	
	(1) An ellipse			oola (4) A para	abola
		(7)			P.T.O.

28.	A current of amount 1.6 Ampere flows through a bulb. The number of electrons that flow per second is:				
	(1) 10 ¹⁹	(2) 10 ¹⁶	(3) 10 ²²	(4) 0	
29.	Number of general cylinder (without s	lized coordinates, slipping) on an inc	required to describe the lined plane, is:	he motion of a rolling	
	(1) One	(2) Two	(3) Three	(4) Four	
30.	The constraints of	a rigid body is :			
	(1) Conservative and rheonomic				
	(2) Conservative a	and scleronomic			
	(3) Holonomic an	d rheonomic			
	(4) Non-holonom	ic and scleronomic	С		
31.	A massive particle under the influen energy of the parti	ice of a potential	Y E is constrained to not $V(x,y) = x^2(x^2 + y^2)$.	nove on a finite plane The average kinetic	
	(1) 2/3 E	(2) 1/3 E	(3) 1/2 E	(4) 3/4 E	
32.	A massive particl $V(x) = x^3 - 3x + 2$. minimum of the p	The angular fre	moves under the in quency of the small	fluence of a potential oscillation, about the	
	(1) $\sqrt{6} \sec^{-1}$	(2) $\sqrt{3} \sec^{-1}$	(3) $1/\sqrt{3} \sec^{-1}$	(4) $1/\sqrt{6} \sec^{-1}$	
33.	If A is 3 × 3 matr other two eigenva	ix with $Tr(A) = 3$, lues are:	det A = 0 and one of	the eigenvalue 1, the	
	(1) 2 and 0	(2) 1 and 1	(3) 0 and 1	(4) 3 and -1	
34.	The following vec	ctor is orthogonal	to the vector $a\hat{i} + b\hat{j}$ (w	with $a \neq b$)	
			$(3) -b\hat{i} + a\hat{j}$		
	(8)				

				→ 2() -22		
35.	If \overrightarrow{r} is a position v	ector	r, the value of	$\nabla^2 \left(\frac{1}{1} \right)$	$\vec{r} \cdot \vec{r} = \vec{\nabla}^2 r^2 $ is	equal to :	
	(1) 6	(2)	0	(3)	3	(4) -3	
36.	An a. c. voltage s capacitor. The pow					nected across a	a 2μF
	(1) 0.000 Watt	(2)	10.800 Watt	(3)	1.080 Watt	(4) 0.972 Wat	tt
37.	A particle is descri	ibed	by the Lagra	angia	n $L(x,y,\dot{x},\dot{y},t) =$	$\frac{m}{2}e^{-\alpha t}(\dot{x}^2+\dot{y}^2)-$	$\frac{1}{2}kx^2$
	where α and k are α					4	2
	(1) p_x is conserved	l					
	(2) total energy is o	conse	rved				
	(3) p_y is conserved	l					
	(4) L_z is conserved	l					
38.	If q_1 and q_2 are g generalized momen	enera	alized coordir ne Poisson-bra	nates cket	and p_1 and p_2 $q_1^2 + q_2^2, 2p_1 + p_2^2$	are correspon	nding
	(1) 0			(2)	$2(q_1 + 2q_2)p_1$		
	(3) $3(q_1^2 + q_2^2)$			(4)	$2(2q_1+q_2)$		
39.	One of the following	g ope	erator is hermi	tian :			
	(1) $\hat{x} \hat{p}_x$	(2)	$\left[\hat{x},\hat{p}_{x}^{2}\right]$	(3)	$-i\frac{d^2}{dx^2}$	$(4) \frac{d^2}{dx^2}$	
40.	One of the following	g is n	ot an eigen sta	te of	the parity opera	ntor?	
	$(1) \cos x + x \sin x$				$x (\cos x + \sin x)$		
	(3) $x \cos x + \sin x$			(4)	$x \cos x \sin x$		
			(9)				
			· · · · · · · · · · · · · · · · · · ·			Ρ.	.T.O.

41. The equivalent resistance in the following circuit between 'a' and 'b':

is as follows:

- (1) 3.53Ω
- (2) 5.40Ω
- (3) 0.36Ω
- (4) 4.72Ω

42. Degeneracy of the first excited state of an isolated hydrogen atom is:

- (1) Two
- (2) Four
- (3) Six
- (4) Eight

43. The normalized ground state of a particle of mass m which is constrained to move inside a potential $V(a) = \begin{cases} 0 & -L \le x \le +L \\ \infty & \text{elsewhere} \end{cases}$

is given by:

 $(1) \quad \sqrt{\frac{2}{L}} \sin \frac{\pi x}{L}$

 $(2) \quad \sqrt{\frac{2}{L}} \cos \frac{\pi x}{L}$

(3) $\sqrt{\frac{1}{L}}\sin\frac{\pi x}{2L}$

 $(4) \quad \sqrt{\frac{1}{L}} \cos \frac{\pi x}{2L}$

44. The weak interaction violates the:

- (1) Time reversal symmetry
- (2) Charge conjugation symmetry
- (3) Space translational symmetry
- (4) Parity symmetry

(10)

- The wave function of a particle $\psi = \frac{1}{\sqrt{2}}(\varphi_0 + i\varphi_1)$ is given in terms of the eigen states ϕ_0 and ϕ_1 corresponding to the ground state energy and the first excited 45. state energy E_0 and E_1 respectively. The expectation value of the Hamiltonian in the state ψ is given by : (1) $\frac{1}{2}E_0 + E_1$ (2) $\frac{E_0}{2} - E_1$ (3) $\frac{E_0' - 2E_1}{3}$ (4) $\frac{E_0 + 2E_1}{3}$

- The energy eigenvalue corresponding to the bound state ψ_{543} (r, θ , ϕ) for a hydrogen like atom is: (3) - 0.544 eV (4) -5.440 eV
 - (1) 0.544 eV
- (2) 5.440 eV

- The gauge transformation between the scalar-vector potentials $\left(\phi,\overrightarrow{A}\right)$ and

$$\left(\phi',\overrightarrow{A}'\right)$$
 is:

- (1) $\varphi' = \varphi + \alpha x$, $\overrightarrow{A}^1 = \overrightarrow{A} + \alpha t \hat{k}$
- (2) $\varphi' = \varphi + \alpha x$, $\overrightarrow{A}^1 = \overrightarrow{A} \alpha t \hat{k}$
- (3) $\varphi' = \varphi + \alpha x, \overrightarrow{A}^1 = \overrightarrow{A} + \alpha t \hat{i}$
- (4) $\varphi' = \varphi + \alpha x$, $\overrightarrow{A}^1 = \overrightarrow{A} \alpha t \hat{i}$
- The electric field \vec{E} , corresponding to the potential, $\phi(\vec{r},t)=0$, $\vec{A}(\vec{r},t) = -\frac{1}{4\pi \epsilon_0} \frac{qt}{r^2} \hat{r}$, is given by:
 - (1) $\vec{E} = 0$

(2) $\overrightarrow{E} = -\frac{1}{4\pi\epsilon_0} \frac{q\overrightarrow{r}}{r^2}$

(3) $\vec{E} = \frac{1}{4\pi \epsilon_0} \frac{q\hat{r}}{r^2}$

(4) $\vec{E} = -\frac{1}{4\pi\epsilon_0} \frac{qt}{r^2} \hat{r}$

(1) uud (2) udd (3) uds (4) uds 50. The weakest of the four fundamental interactions of nature is: (1) Electromagnetic (2) Strong (3) Gravitation (4) Weak 51. The degrees of freedom, when the FCC and BCC irons co-exist together in equilibrium, is: (1) Two (2) (2) One (1) (3) Zero (0) (4) Minus one (-1) 52. For the same diffusion time, the depth of penetration at 500°C and 850°C is in the ratio 1:6. The activation energy for the above diffusion process is: (1) 57 KJ mole ⁻¹ (2) 37 KJ mole ⁻¹ (3) 144 KJ mole ⁻¹ (4) 74 KJ mole ⁻¹ 53. The maximum possible decrease in energy during the grain-growth of copper, where the grain boundary energy is 0.5 Jm ⁻² and the initial grain-diameter is 0.3 mm, is as follows: (1) 0.5 KJ m ⁻³ (2) 2.5 KJ m ⁻³ (3) 5.0 KJ m ⁻³ (4) 10.0 KJ m ⁻³ 54. If the enthalpy of motion of a vacancy, at temperature 25°C, is 100 KJ mole ⁻¹ , the time taken by a vacancy to jump to an adjacent site, is: (1) 3 × 10 ¹⁷ sec (2) 2 × 10 ²⁶ sec (3) 3 × 10 ³ sec (4) 3 × 10 ⁴ sec 55. For a spherical FCC crystal of radius r, the volume-to-surface ratio is given by: (1) $\frac{3}{r}$ (2) $r/3$ (3) $3r$ (4) $\frac{\pi r}{3}$		49. The quark cor	ntent of a neutron is	;	
 (3) Gravitation (4) Weak 51. The degrees of freedom, when the FCC and BCC irons co-exist together in equilibrium, is: (1) Two (2) (2) One (1) (3) Zero (0) (4) Minus one (-1) 52. For the same diffusion time, the depth of penetration at 500°C and 850°C is in the ratio 1:6. The activation energy for the above diffusion process is: (1) 57 KJ mole⁻¹ (2) 37 KJ mole⁻¹ (3) 144 KJ mole⁻¹ (4) 74 KJ mole⁻¹ 53. The maximum possible decrease in energy during the grain-growth of copper, where the grain boundary energy is 0.5 Jm⁻² and the initial grain-diameter is 0.3 mm, is as follows: (1) 0.5 KJ m⁻³ (2) 2.5 KJ m⁻³ (3) 5.0 KJ m⁻³ (4) 10.0 KJ m⁻³ 54. If the enthalpy of motion of a vacancy, at temperature 25°C, is 100 KJ mole⁻¹, the time taken by a vacancy to jump to an adjacent site, is: (1) 3 × 10¹⁷ sec (2) 2 × 10²⁶ sec (3) 3 × 10³ sec (4) 3 × 10⁴ sec 55. For a spherical FCC crystal of radius r, the volume-to-surface ratio is given by: (1) ³/_r (2) r/3 (3) 3r (4) ^{πr}/₃ 56. If the interfacial energy increases by 10%, the homogeneous nucleation barrier for a spherical particle increases by: (2) 21% (3) 33% (4) 100% 		(1) uud	(2) udd	· (3) uds	(4) $ud\bar{s}$
 (3) Gravitation (4) Weak 51. The degrees of freedom, when the FCC and BCC irons co-exist together in equilibrium, is: (1) Two (2) (2) One (1) (3) Zero (0) (4) Minus one (-1) 52. For the same diffusion time, the depth of penetration at 500°C and 850°C is in the ratio 1:6. The activation energy for the above diffusion process is: (1) 57 KJ mole⁻¹ (2) 37 KJ mole⁻¹ (3) 144 KJ mole⁻¹ (4) 74 KJ mole⁻¹ 53. The maximum possible decrease in energy during the grain-growth of copper, where the grain boundary energy is 0.5 Jm⁻² and the initial grain-diameter is 0.3 mm, is as follows: (1) 0.5 KJ m⁻³ (2) 2.5 KJ m⁻³ (3) 5.0 KJ m⁻³ (4) 10.0 KJ m⁻³ 54. If the enthalpy of motion of a vacancy, at temperature 25°C, is 100 KJ mole⁻¹, the time taken by a vacancy to jump to an adjacent site, is: (1) 3 × 10¹⁷ sec (2) 2 × 10²⁶ sec (3) 3 × 10³ sec (4) 3 × 10⁴ sec 55. For a spherical FCC crystal of radius r, the volume-to-surface ratio is given by: (1) ³/_r (2) r/3 (3) 3r (4) ^{πr}/₃ 56. If the interfacial energy increases by 10%, the homogeneous nucleation barrier for a spherical particle increases by: (2) 21% (3) 33% (4) 100% 		(1) Electromag	gnetic		ture is :
 (1) Two (2) (2) One (1) (3) Zero (0) (4) Minus one (-1) 52. For the same diffusion time, the depth of penetration at 500°C and 850°C is in the ratio 1:6. The activation energy for the above diffusion process is: (1) 57 KJ mole⁻¹ (2) 37 KJ mole⁻¹ (3) 144 KJ mole⁻¹ (4) 74 KJ mole⁻¹ 53. The maximum possible decrease in energy during the grain-growth of copper, where the grain boundary energy is 0.5 Jm⁻² and the initial grain-diameter is 0.3 mm, is as follows: (1) 0.5 KJ m⁻³ (2) 2.5 KJ m⁻³ (3) 5.0 KJ m⁻³ (4) 10.0 KJ m⁻³ 54. If the enthalpy of motion of a vacancy, at temperature 25°C, is 100 KJ mole⁻¹, the time taken by a vacancy to jump to an adjacent site, is: (1) 3 × 10¹⁷ sec (2) 2 × 10²⁶ sec (3) 3 × 10³ sec (4) 3 × 10⁴ sec 55. For a spherical FCC crystal of radius r, the volume-to-surface ratio is given by: (1) 3/r (2) r/3 (3) 3r (4) πr/3 56. If the interfacial energy increases by 10%, the homogeneous nucleation barrier for a spherical particle increases by: (1) 10% (2) 21% (3) 33% (4) 100% 	_			(4) Weak	
 52. For the same diffusion time, the depth of penetration at 500°C and 850°C is in the ratio 1:6. The activation energy for the above diffusion process is: 57 KJ mole⁻¹ 37 KJ mole⁻¹ 31 144 KJ mole⁻¹ 74 KJ mole⁻¹ 53. The maximum possible decrease in energy during the grain-growth of copper, where the grain boundary energy is 0.5 Jm⁻² and the initial grain-diameter is 0.3 mm, is as follows: 0.5 KJ m⁻³ 2.5 KJ m⁻³ 3.50 KJ m⁻³ 10.0 KJ m⁻³ 54. If the enthalpy of motion of a vacancy, at temperature 25°C, is 100 KJ mole⁻¹, the time taken by a vacancy to jump to an adjacent site, is: 3 × 10¹⁷ sec 2 × 10²⁶ sec 3 × 10³ sec 3 × 10⁴ sec 55. For a spherical FCC crystal of radius r, the volume-to-surface ratio is given by: 4 πr/3 7 (2) r/3 3 πr/3 4 πr/3 56. If the interfacial energy increases by 10%, the homogeneous nucleation barrier for a spherical particle increases by: 20 21% 33% 100% 	5	 The degrees of equilibrium, is: 	freedom, when the	ne FCC and BCC in	ons co-exist together in
the ratio 1 : 6. The activation energy for the above diffusion process is : (1) 57 KJ mole ⁻¹ (2) 37 KJ mole ⁻¹ (3) 144 KJ mole ⁻¹ (4) 74 KJ mole ⁻¹ 53. The maximum possible decrease in energy during the grain-growth of copper, where the grain boundary energy is 0.5 Jm ⁻² and the initial grain-diameter is 0.3 mm, is as follows: (1) 0.5 KJ m ⁻³ (2) 2.5 KJ m ⁻³ (3) 5.0 KJ m ⁻³ (4) 10.0 KJ m ⁻³ 54. If the enthalpy of motion of a vacancy, at temperature 25°C, is 100 KJ mole ⁻¹ , the time taken by a vacancy to jump to an adjacent site, is: (1) 3 × 10 ¹⁷ sec (2) 2 × 10 ²⁶ sec (3) 3 × 10 ³ sec (4) 3 × 10 ⁴ sec 55. For a spherical FCC crystal of radius <i>r</i> , the volume-to-surface ratio is given by: (1) 3/r (2) r/3 (3) 3r (4) πr/3 56. If the interfacial energy increases by 10%, the homogeneous nucleation barrier for a spherical particle increases by: (1) 10% (2) 21% (3) 33% (4) 100%	50			(3) Zero (0)	(4) Minus one (-1)
 53. The maximum possible decrease in energy during the grain-growth of copper, where the grain boundary energy is 0.5 Jm⁻² and the initial grain-diameter is 0.3 mm, is as follows: 0.5 KJ m⁻³ 2.5 KJ m⁻³ 3.50 KJ m⁻³ 10.0 KJ m⁻³ 54. If the enthalpy of motion of a vacancy, at temperature 25°C, is 100 KJ mole⁻¹, the time taken by a vacancy to jump to an adjacent site, is: 3 × 10¹⁷ sec 2 × 10²⁶ sec 3 × 10³ sec 3 × 10⁴ sec 55. For a spherical FCC crystal of radius <i>r</i>, the volume-to-surface ratio is given by: 4 πr/3 7 (2) r/3 3 3r 4 πr/3 56. If the interfacial energy increases by 10%, the homogeneous nucleation barrier for a spherical particle increases by: 10% 21% 33% 100% 	32		0,7	THE above unitusi	t 500°C and 850°C is in
 56. The maximum possible decrease in energy during the grain-growth of copper, where the grain boundary energy is 0.5 Jm⁻² and the initial grain-diameter is 0.3 mm, is as follows: (1) 0.5 KJ m⁻³ (2) 2.5 KJ m⁻³ (3) 5.0 KJ m⁻³ (4) 10.0 KJ m⁻³ 54. If the enthalpy of motion of a vacancy, at temperature 25°C, is 100 KJ mole⁻¹, the time taken by a vacancy to jump to an adjacent site, is: (1) 3 × 10¹⁷ sec (2) 2 × 10²⁶ sec (3) 3 × 10³ sec (4) 3 × 10⁴ sec 55. For a spherical FCC crystal of radius <i>r</i>, the volume-to-surface ratio is given by: (1) 3/r (2) r/3 (3) 3r (4) π/3 56. If the interfacial energy increases by 10%, the homogeneous nucleation barrier for a spherical particle increases by: (2) 21% (3) 33% (4) 100% 	52	(1) 5/ KJ mole ⁻¹	(2) 37 KJ mole	(3) 144 KJ mole	-1 (4) 74 KI mole -1
 54. If the enthalpy of motion of a vacancy, at temperature 25°C, is 100 KJ mole⁻¹, the time taken by a vacancy to jump to an adjacent site, is: (1) 3 × 10¹⁷ sec (2) 2 × 10²⁶ sec (3) 3 × 10³ sec (4) 3 × 10⁴ sec 55. For a spherical FCC crystal of radius <i>r</i>, the volume-to-surface ratio is given by: (1) 3/r (2) r/3 (3) 3r (4) π/3 56. If the interfacial energy increases by 10%, the homogeneous nucleation barrier for a spherical particle increases by: (1) 10% (2) 21% (3) 33% (4) 100% 	55,	where the grain b	ossible decrease in o	onova	
 54. If the enthalpy of motion of a vacancy, at temperature 25°C, is 100 KJ mole⁻¹, the time taken by a vacancy to jump to an adjacent site, is: (1) 3 × 10¹⁷ sec (2) 2 × 10²⁶ sec (3) 3 × 10³ sec (4) 3 × 10⁴ sec 55. For a spherical FCC crystal of radius <i>r</i>, the volume-to-surface ratio is given by: (1) 3/r (2) r/3 (3) 3r (4) π/3 56. If the interfacial energy increases by 10%, the homogeneous nucleation barrier for a spherical particle increases by: (1) 10% (2) 21% (3) 33% (4) 100% 	-	(1) $0.5 \mathrm{KJ}\mathrm{m}^{-3}$	(2) $2.5 \text{KJ} \text{m}^{-3}$	(3) 5.0 KJ m^{-3}	(4) 10.0 KJ m ⁻³
 55. For a spherical FCC crystal of radius <i>r</i>, the volume-to-surface ratio is given by: (1) 3/r (2) r/3 (3) 3r (4) π/3 56. If the interfacial energy increases by 10%, the homogeneous nucleation barrier for a spherical particle increases by: (1) 10% (2) 21% (3) 33% (4) 100% 	54.	If the enthalpy of	motion of a vacano	W at tomposet of	*00 : 100 ·
 (1) 3/r (2) r/3 (3) 3r (4) π/3 56. If the interfacial energy increases by 10%, the homogeneous nucleation barrier for a spherical particle increases by : (1) 10% (2) 21% (3) 33% (4) 100% 		(1) $3 \times 10^{17} \text{ sec}$	(2) $2 \times 10^{26} \text{sec}$	(3) $3 \times 10^3 \text{sec}$	(4) $3 \times 10^4 \text{sec}$
 (1) 3/r (2) r/3 (3) 3r (4) π/3 56. If the interfacial energy increases by 10%, the homogeneous nucleation barrier for a spherical particle increases by : (1) 10% (2) 21% (3) 33% (4) 100% 	55.	For a spherical FCC	crystal of radius r,	, the volume-to-surfa	ce ratio is given by :
(1) 10% (2) 21% (3) 33% (4) 100%		$(1) \frac{3}{r}$	(2) r/3	(3) 3r	$(4) \frac{\pi r}{3}$
(1) 10% (2) 21% (3) 33% (4) 100%	56.	If the interfacial en	ergy increases by 1 cle increases by :	0%, the homogeneo	us nucleation barrier
(12)				(3) 33%	(4) 100%
			(12))	

	(1) Grain refit	nement	, and a	me material is .
	(2) Annealing	in the air		
	(3) Cold work	ing		
	(4) By increasi	ing inter-precipitate	Spacing	
58.	. If the activation rates at 800°C a		tion is 100 KI	⁻¹ , the ratio of oxidation
	(1) 8270	(2) 78	(3) 10	(4) 312
59.	The switching t	ime for a Josephson	junction is of the or	
	(1) 10^{-2} m sec	(2) 10^{-2} n sec	(3) 10 μ sec	
60.	The degeneracy	of the quantum sta	te, with $, n_x^2 + n_y^2 + n_z^2$	$(4) 5 \mu \sec^2$
	(1) 8 (eight)			
	(3) 48 (forty eig	ht)	(2) 12 (twelve)	
61.	In the expression	n fan h	(4) 24 (twenty	
	n takes the sales	il for bonding force	$F(r) = \frac{A}{r^m} - \frac{B}{r^n} [n >$	m, $(A, B) = constant$] if
	(1) Ionic	2 between 7 and 10, to (2) Covalent	r''' r'' the bonding is called (3) Metallic	las: (4) Dipole
62.	If copper has bor	nd energy of 56 KI (mole)=1 11- 11-	by of the atomization of
	copper in the sam (1) 56	I I	ely:	by of the atomization of
63.		(2) 112	(3) 336	(4) 672
	for this unit cell is	= 5A, b = 8Å, c = 3Å, s:	$, \alpha = 90^{\circ}, \beta = 65^{\circ}, \gamma$	(4) · 672 = 54°. The space lattice
	(1) Orthorhombia	С	(2) Monoclinic	
	(3) Rhombohedra		(4) Triclinic	
64.	The Miller indices	of the line of interse	ection of a (171)	la (110) planes are :
((1) [1]0]	(2) [2 1 0]	(2) [1] and	la (110) planes are:
		(a) ×1	$(3) [\overline{1} \overline{1} 0]$	(4) [111]
		(13))	
				P.T.O.

The method to increase the yield strength of a crystalline material is:

			Y .	
65.	The t-vector is para	ıllel to the b-vector	in the dislocation of t	
	(1) Screw	(2) Edge	(3) Mixed	(4) Frenkel defect
66.	Assuming the idea largest sphere that	ol C/a ratio for the will fit interstitiall	HCP Ti (with $a = 2.95$ y in Ti ; is:	Å), the radius of the
	(1) 0.53 Å	(2) 0.66 Å	(3) 0.61 Å	(4) 0.96 Å
67.	The Fermi level ($E_{\mathrm{F}})$ depends on the	length L of the linear	solid as:
			(2) $\frac{1}{L^3}$	*
	$(1) \frac{1}{L^2}$ $(3) \frac{1}{L}$	4	(4) Independent	of L
68	. The first measure	ed T_C in a ceramic	superconductor by	Bednorz and Mueller
	was:	(2) 22 V	(3) 34 K	(4) 90 K
	(1) 04 K	(2) 23 K		f the fastest electron at
69	. If the Fermi energing of the Magnetian	gy of silver is 3.3 e	as:	
	(1) 0.85 × 10 ¹⁰	(2) 7.54×10^{10}	(3) 1.20×10^{10}	(4) 0.19×10^{10}
70). A cobalt k_{α} radia The first S-value	e on the powder p	1.79Å is used in a can pattern of an FCC cry	nera of radius 57.3 mm. stal ($a = 4.05 \text{ Å}$), taken
	with this camera	(2) 51 mm	(3) 75 mm	(4) 90 mm
	(1) 45 mm	senomenon, genera	ated due to the transfe	r of momentum, is:
7			(2) Viscosity	
	(1) Thermal co	onductivity	(4) Elasticity	
	(3) Diffusion		(14)	

72	The liquification of helium is pos	ssible :	
	(1) At ordinary temperature	(2) Below – 268°C	
	(3) At – 196°C	(4) Below – 83°C	
73	. Internal energy of a system chang	ges in :	
	(1) Isothermal change	(2) Adiabatic change	
	(3) Free expansion	(4) Cyclic process	Ĉ
74.	According to celebrated Clausius	theorem:	
	$(1) \oint \frac{dQ}{T} > 0$	$(2) \oint \frac{dQ}{T} < 0$	
	(3) $\oint \frac{dQ}{T} = \text{non-zero constant}$	$(4) \oint \frac{dQ}{T} = 0$	
75.	For a perfectly black-body, the abs	sorption power is:	
	(1) One	(2) More than one	
	(3) Less than one	(4) Zero	
76.	Wien's displacement law is:		
	(1) $\lambda T = constant$	(2) $\frac{1}{3} \frac{\lambda}{T} = \text{constant}$	
	(3) $\frac{\lambda}{TV} = \text{constant}$	(4) $\frac{\lambda T}{V} = \text{constant}$	
77.	A Carnot engine works betwee temperature (100°C). Its efficiency is	en ico temperature (0°C) and the st	eam
	(1) 36.6% (2) 37.8%	(3) 26.8% (4) 73.2%	
	1	15)	

78. Clausius-Clapeyron equation is:

$$(1) \quad \frac{dP}{T} = L(V_2 - V_1)$$

$$(2) \quad \frac{dP}{dT} = \frac{L}{T(V_2 - V_1)}$$

(3)
$$dT = \frac{L}{T}(V_2 - V_1) dp$$

$$(4) \quad \frac{dP}{dT} = \frac{T}{L(V_2 - V_1)}$$

79. The number of allowed modes per unit volume in the wavelength range λ and $\lambda + d\lambda$ is :

$$(1) \ \frac{8\pi}{\lambda^4} d\lambda$$

(2)
$$\frac{8\pi\lambda^2}{C^3}d\lambda$$
 (C = speed of light)

(3)
$$\frac{4\pi\lambda^2}{C^3}d\lambda$$
 (C = speed of light)

$$(4) \quad \frac{4\pi}{\lambda^4} \, d\lambda$$

- 80. The critical temperature of a Vander Waals gas is:
 - (1) 3b
 - (2) $\frac{8a}{27Rb}$ (a & b = Vander Walls parameters, R = Gas constant)
 - (3) $\frac{8a}{27b}$
 - (4) $\frac{a}{27b^2}$
- **81.** A body is moving uniformly on a circular path with speed v. The magnitude of the change in its velocity when it has swept an angle θ , is :
 - (1) $2v\sin\theta/2$
- (2) $2 v \sin \theta$
- (3) $2 v \cos \theta$
- (4) $2 v \cos \theta / 2$

- **82.** A particle is moving with 90% of the speed of light. The ratio of its relativistic mass with its rest mass is approximately:
 - (1) 2.3
- (2) 3.0
- (3) 5.0
- (4) 2.0

- **83.** The ratio $\left(\frac{\partial V}{\partial T}\right)_P$ is negative for :
 - (1) Water at 10°C

- (2) Ice at 0°C
- (3) Water between 0°C and 4°C
- (4) Water at 100°C
- 84. The hydrogen gas ejecting away from a porus plug at 300 K shows:
 - (1) Cooling effect
 - (2) Heating effect
 - (3) Sometimes cooling sometimes heating
 - (4) Coating effect
- **85.** A Gaussian surface encloses no charge only one of the following is true for a point inside it:
 - (1) Electric field must be zero
 - (2) Electric potential must be zero
 - (3) Electric field and potential are zero
 - (4) Electric flux is zero
- **86.** Extremely low temperature can be produced by one of the following:
 - (1) Adiabatic demagnetization of paramagnetic salt
 - (2) Adiabatic magnetization of paramagnetic salt
 - (3) Isothermal magnetization of diamagnetic salt
 - (4) Isothermal demagnetization of diamagnetic salt

87.	An electromagnetic wave, $E = E_0 \sin(kx - wt)$, $B = B_0 \sin(kx - wt)$, going through vacuum, in $(kx - wt)$.	is described by
	One of the following is true?		· (121) · t
	$(1) E_{o}k = B_{o}w$	$(2) E_o B_o = w k$	1 1 (1)
	$(3) E_{o}w = B_{o}k$	$(4) E_{o} B_{o} = fk$	$(w = 2 \pi f)$
88.	The dielectric constant of a m	naterial at optical frequencies is	
	(1) Ionic polarizability		ž ×
	(2) Electric polarizability		
	(3) Dipolar polarizability		
	(4) Ionic and dipolar polariz	abilities	
89.	A clock moves away from would seem to lose 1 minute	an observer with a uniform per day if it moves with the ve	velocity. This clock elocity:
	(1) $1.12 \times 10^7 \mathrm{m/sec}$		Paris de la companya della companya
	(2) $2.24 \times 10^7 \mathrm{m/sec}$		
	(3) 12.24×10^7 m/sec		et no
	(4) $1.12 \times 10^6 \mathrm{m/sec}$		
	V	1- i- loader	d at the centre. The
90.	A beam of metal, supported depression, in terms of the Y	ed at the two ends, is loaded oung modulus (Y), at the cent	
	(1) Y ² (2) Y	$(3) \ \frac{1}{Y}$	$(4) \frac{1}{\gamma^2}$
91.	if the pressure and temperat	ules of a gas at pressure P and ture are doubled, the mean free	* 1/1111
	(1) $2 \times 10^{-6} \mathrm{m}$ (2) $2 \times$	10^{-6}cm (3) $12 \times 10^{-8} \text{m}$	(4) $20 \times 10^{-6} \mathrm{m}$
		(18)	

				(1)
92.				radiation enclosure become (assuming
	(1) Four times	(2) Eight times	(3) Doubled	(4) Sixteen times
93.	The Maxwell equa is as follows:	tion that remains ur	ichanged when the	medium is changed,

(1)
$$\overrightarrow{\nabla} \cdot \overrightarrow{E} = \rho / \epsilon_0$$

(2)
$$\overrightarrow{\nabla} \cdot \overrightarrow{B} = 0$$

(3)
$$\overrightarrow{\nabla} \times \overrightarrow{E} = -\frac{1}{C^2} \frac{\partial \overrightarrow{E}}{\partial t}$$

(4)
$$\overrightarrow{\nabla} \times \overrightarrow{B} = \mu_0 \overrightarrow{J} + \mu_0 \in_0 \frac{\partial \overrightarrow{E}}{\partial t}$$

94. If a plane EM wave propagating in space has an electric field of amplitude 9×10^3 V/m, the amplitude of magnetic field is:

(1)
$$2.7 \times 10^{12}$$
 Tesla

(2)
$$9.0 \times 10^{-3}$$
 Tesla

(3)
$$13.0 \times 10^{-4}$$
 Tesla

(4)
$$3.0 \times 10^{-5}$$
 Tesla

For a transmission line with homogeneous dielectric, the capacitance per unit length is C, relative permittivity of dielectric is ϵ_r , and velocity of light in free space is v. The characteristic impedance \mathbb{Z}_0 is equal to :

$$(1) \quad \frac{\epsilon_r}{vC}$$

$$(2) \quad \frac{\epsilon_r}{\sqrt{vC}}$$

$$(3) \quad \frac{\sqrt{\epsilon_r}}{V_C}$$

(1)
$$\frac{\epsilon_r}{vC}$$
 (2) $\frac{\epsilon_r}{\sqrt{vC}}$ (3) $\frac{\sqrt{\epsilon_r}}{V_C}$ (4) $\sqrt{\frac{\epsilon_r}{vC}}$

96. One of the following is a doubly magic nucleus?

(1)
$${}^{14}_{7}N_{7}$$

(2)
$${}^{17}_{8}O_{9}$$

(3)
$${}^{208}_{82}Pb_{126}$$

(2)
$${}^{17}_{8}O_{9}$$
 (3) ${}^{208}_{82}Pb_{126}$ (4) ${}^{209}_{82}Pb_{127}$

The life time of a free neutron to decay into a proton, an electron and an

(2)
$$10^{-20}$$
 sec (3) 10^{-8} sec

(3)
$$10^{-8} \sec$$

(4)
$$10^3$$
 sec

98.	The process $K^{\circ} \to \pi^{\circ}$:	τ is governed by the	e weak interaction.	It is an example of a :
	(1) Non-leptonic de	cay		
	(2) Leptonic decay			
	(3) Semi-leptonic de	ecay		
	(4) Leptonic as wel	l as semi-leptonic d	ecay	
99.	The typical radius (I	R) of a nucleus varie	es with its mass nur	nber as :
	(1) $R \sim A^{1/5}$			
100.	Two nuclei an said	o be isobars :		
	(1) If their mass nu	mber is same		
	(2) If their atomic r	iumber is same		
	(3) If their neutron	number is same		
	(4) If their mass nu	imber and atomic n	umber åre same	
101.	The de Broglie way	elength of an electr tely :	on, accelerated thro	ough a potential of 150
	(1) 1.004 Å	(2) 2.004 Å	(3) 3.004 Å	(4) 4.004 Å
102	such time of	the strong interacti	on in the realm of r	nuclear reactions is :
102	(1) 10 ⁻⁸ SeC	(2) 10^{-10} sec	(3) 10^{-20} sec	(4) 10^{-23} sec
	(1) 10	n matrix, then e^{iH} is	one of the following	g:
103			(2) Unitary mat	rix
	(1) Hermitian ma	-ariv	(4) Null matrix	
	(3) Orthogonal 1	(5	500 (
			255	
				\$

- If A is a skew-symmetric matrix and R is its rank, then:
 - (1) R = 1
- (2) $R \le 1$
- (3) R > 1
- (4) $R \ge 1$
- 105. If I and O are (2×2) identity and null matrices in $I + pA + qA^2 = 0$ then, p and q values for the matrix $A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$ are one of the following:
 - (1) $p = \frac{2}{5}$, $q = \frac{1}{5}$

(2) $p = -\frac{2}{5}$, $q = \frac{1}{5}$

(3) $p = \frac{2}{5}, q = -\frac{1}{5}$

- (4) $p = -\frac{2}{5}$, $q = -\frac{1}{5}$
- The value of the Legendre polynomial $P_n(x)$ for n = 3, is: 106.

 - (1) $\left(\frac{5x^3 + 3x}{2}\right)$ (2) $\left(\frac{5x^3 + 3x}{1}\right)$ (3) $\left(\frac{5x^3 3x}{2}\right)$ (4) $\left(\frac{5x^3 3x}{1}\right)$
- If A_{μ} and B^{ν} are covariant and contravariant tensors of rank 1, then $(A_{\mu}B^{\nu})$ corresponds to:
 - (1) Contravariant tensor of rank one
 - (2) Covariant tensor of rank one
 - (3) Mixed tensor of rank one
 - (4) Mixed tensor of rank two
- One of the following recurrence relations is correct for the Hermite polynomial 108.
 - (1) $H'_n(x) = 2(n+1)H_{n+1}(x)$
- (2) $H'_n(x) = 2(n-1)H_{n-1}(x)$
- (3) $H'_{n}(x) = 2nH_{n+1}(x)$
- (4) $H'_n(x) = 2nH_{n-1}(x)$

- **109.** The value of the Bessel functions $[J_{1/2}(x)]^2 + [J_{-1/2}(x)]^2$ is one of the following:
 - (1) $\frac{2}{\pi x}$
- $(2) \quad \frac{\pi x}{2}$
- $(3) \quad \sqrt{\frac{2}{\pi x}}$
- $(4) \quad \sqrt{\frac{\pi x}{2}}$
- 110. The generating functional for the Bessel function is:
 - (1) $e^{x(z+z^{-1})} = \sum_{n=-\infty}^{+\infty} J_n(x)z^n$
- (2) $e^{x(z-z^{-1})} = \sum_{n=-\infty}^{+\infty} J_n(x)z^n$
- (3) $e^{\frac{x(z+z^{-1})}{2}} = \sum_{n=-\infty}^{+\infty} J_n(x)z^n$
- (4) $e^{\frac{x(z-z^{-1})}{2}} = \sum_{n=-\infty}^{+\infty} J_n(x)z^n$
- 111. One of the following is true:
 - (1) $\frac{d}{dx} [x^n J_n(x)] = x^{n-1} J_{n-1}(x)$
- (2) $\frac{d}{dx} [x^n J_n(x)] = x^{n+1} J_{n-1}(x)$
- (3) $\frac{d}{dx} [x^n J_n(x)] = x^n J_{n+1}(x)$
- $(4) \quad \frac{d}{dx} \left[x^n J_n(x) \right] = x^n J_{n-1}(x)$
- **112.** In the Bessel equation $x^2 \frac{d^2 y}{dx^2} + (x^2 n^2)y + x \frac{dy}{dx} = 0$:
 - (1) x = 1 is a regular singular point
 - (2) x = 1 is an irregular singular point
 - (3) x = 0 is a regular singular point
 - (4) x = 0 is an irregular singular point
- **113.** The eigenvectors of the matrix $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ are as follows:
 - (1) $\binom{1}{i}$ and $\binom{1}{-i}$

(2) $\binom{1}{i}$ and $\binom{-1}{i}$

(3) $\binom{i}{1}$ and $\binom{-i}{1}$

(4) $\binom{i}{1}$ and $\binom{i}{-1}$

114. The first term in the Fourier series of $f(x) = \frac{(\pi - x)^2}{4}$, in the range $(-\pi < x < \pi)$, is:

- (2) $\frac{\pi^2}{6}$ (3) $\frac{\pi}{6}$ (4) $\frac{\pi^2}{12}$

Consider the following triangular periodic wave of period T. 115.

The first term in the Fourier series of this triangular periodic wave is:

- (1) a
- (2) a / 2
- (3) a
- (4) a/2

The Wronskian $W(y_1,y_2)$ for the two solutions $y_1(x)$ and $y_2(x)$ of the second order differential equation is:

(1)
$$W = y_1 y_2' - y_2 y_1' \left(y_1' = \frac{dy_1}{dx} \right)$$

(2)
$$W = y_1 y_2' + y_2 y_1' \left(y_2' = \frac{dy_2}{dx} \right)$$

- (3) $W = y_1 y_2' y_1' y_2'$
- (4) $W = y_1 y_2 + y_1 y_2$

117. The difference $\left(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}\right)$ can be expressed in terms of the polar coordinates (r, θ, φ) as:

- $(1) \frac{\partial}{\partial r} \qquad \qquad (2) \frac{\partial}{\partial \Theta}$
- (3) $\frac{\partial}{\partial \varphi}$ (4) $\frac{\partial}{\partial \varphi} + \frac{\partial}{\partial \varphi}$

The square of the orbital angular momentum operator $\vec{L} = -1 (\vec{r} \times \vec{\nabla})$ can be expressed as:

$$(1) |\vec{L}|^2 = -r^2 \vec{\nabla}^2 + \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right)$$

$$(2) |\vec{L}|^2 = r^2 \vec{\nabla}^2 - \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right)$$

(2)
$$|\vec{L}|^2 = r^2 \vec{\nabla}^2 - \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right)$$

(3)
$$|\overrightarrow{L}|^2 = -r^2 \overrightarrow{\nabla}^2 - \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right)$$

(4)
$$|\overrightarrow{L}|^2 = r^2 \overrightarrow{\nabla}^2 + \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right)$$

One of the following functions form an orthonormal set for the Languerre polynomial $(L_n(x))$:

$$(1) \quad e^{-x}L_n(x) \quad 0 \le x \le \infty$$

(2)
$$e^{-x/2}L_n(x)$$
 $0 \le x \le \infty$

(3)
$$e^{-x}L_n(x)$$
, $-\infty \le x \le +\infty$

(4)
$$e^{-x/2}L_n(x) -\infty \le x \le +\infty$$

The orthonormality relation of the Hermite polynomials is:

(1)
$$\int_{-\infty}^{+\infty} e^{-x^2} H_n(x) H_m(x) dx = \frac{n!}{2^n} \sqrt{\pi} \, \delta_{nm}$$

(2)
$$\int_{-\infty}^{+\infty} e^{-x^2} H_n(x) H_m(x) dx = \frac{n!}{2^n \sqrt{\pi}} \delta_{nm}$$

(3)
$$\int_{-\infty}^{+\infty} e^{-x^2} H_n(x) H_m(x) dx = \frac{\sqrt{\pi}}{2^n n!} \delta_{nm}$$

$$(4) \int_{-\infty}^{+\infty} e^{-x^2} H_n(x) H_m(x) \, dx = 2^n \, n! \sqrt{\pi} \, \delta_{nm}$$

- Two coherent sources, whose intensity ratio is 25: 16, produce interference 121. fringes. The ratio of the maximum and minimum intensities of the fringe system will be:
 - (1) 25:1
- (2) 25:16
- (3) 5:4
- (4) 81:1

12	2. Two independent light sour	ces can not produces int	erference pattern because :
	(1) their phase difference ca		
	(2) their frequencies can no		
	(3) their amplitudes can no		
	(4) their phase difference m		itudos con not ha d
123			
	(1) Dark (2) Brig		
124	~	(1) Soldie	() - TOT TOT THE CO
	Resolving power of the Febe(1) Smaller than the Michels	ry Perrot Interferometer	is:
	(2) Larger than the Michelso	n interferometer	
	(3) Equal to the Michelson in		
	(4) Double of the Michelson	interferometer	
125.	If the outer orbit of an atom would be:	contains two electrons,	, the possible multiplicity
	(1) 1, 3 (2) 1	(3) 3	(4) 0
126.	The selection rules for an atom	nic transition is:	
	(1) $\Delta J = 0, \pm 1$ (2) $\Delta J = 0$		(4) $\Delta J = 0, \pm 1, \pm 2$
127.	For the hydrogen like atoms, the first state of $S_{1/2}$ (2) $S_{1/2}$		(\pm) $\Delta j = 0, \pm 1, \pm 2$
	(1) ${}^{2}S_{1/2}$ (2) ${}^{2}P_{1/2}$	e ground state configura	
128.		(3) ${}^{2}S_{0}$	(4) ${}^{2}S_{3/2}$
	For an electron with the quantum (1) 3/2, 3/2	1 = 2, the pos	Sible values of:
	(1) 3/2,3/2	(2) 5/2,3/2	values of j are :
	(3) 5/2, 3/2, 1/2	(4) 3/2, 1/2	
		(25)	DTA
			P.T.O.

129.	Uhlenbeck and Gondsmit introduced the	he concept of:	o/
	(1) Electron spin	(2) Electron charge	
	(3) Proton spin	(4) Neutron spin	1 -
130.	Optical pumping is not suitable for the	gas laser because, in this la	ser, the active
	atoms have :		
	(1) Broad energy levels		w M
	(2) Sharp energy levels		2.2.9
	(3) Large number of Stark component	ts	5 ME
	(4) Large number of Zeeman compon	nents	
131.	In a He-Ne laser, the key factor in the	process of population inver	rsion is :
	(1) The energy transfer from He to N	e	i a
	(2) The energy transfer from Ne to H	le	5.
	(3) The metastable state of Ne		
	(4) The collision of electron with the	wall	la lato
132	2. In a Frank-Herz experiment, one plo	ts a graph between grid pot	tential and plate
	current. The observed deep in this co	arve as a	* 17.
	(1) Inelastic collision of the e^- with	atom	
	(2) Elastic collision of the e^- with a	tom	
	(3) Inelastic collision between atom		
	(4) Elastic collision between atoms		-5*
	((26)	

133	An unpolarized the emergent lig	l light of inter ght will be :	nsity I_0 pass	es th	rough a Nic	cole prism	, the intensity	of
	(1) I ₀	(2) I ₀	/3	(3)	$I_0/2$	(4)	$I_0/4$	
134.	An unpolarized and μ_e are the ordinary rays, t	e refractive	es through a indices of t	i dou he ci	ibly refract	ing calcit	e crystal. If μ ary and extra	ι ₀ a-
	(1) $\mu_0 > \mu_e$	(2) μ _e :	> μ ₀	(3)	$\mu_e = \mu_0$	(4)	$\mu_e = 2\mu_0$	
135.	A plane polariz vector is at an a	zed light fall ngle of 30° fi	s normally com the opti	on a c axis	quarter was. The emer	ave plate gent bear	whose electri n will be :	ic
	(1) Unpolarized	d						
	(2) Plane polar	ized						
	(3) Circularly p	olarized						
	(4) Elliptically 1	polarized				·		
136.	In the Newton r due to :	ing experime	ent, the fring	es ar	e cirçular b	ecause th	ey are formed	ł
	(1) Equal thickr	ess of the air	film					
,	(2) Varying thic	kness of the	air film					
	(3) Diffraction							
	(4) Reflection be	tween the up	per and low	ver sı			onvex lens	
37,	A zone plate hat transparent zone	s focal leng	th 1 m for	λ =	6000Å. T	he radius	s of the first	
	(1) 0.077 cm	(2) 0.062	cm (3	3) 0.2	200 cm	(4) 0.3	300 cm	
			(27)				P.T.O.	

138.	If the number of lines in a grating is increased, its resolving power would:
	(1) increase
	(2) decrease
	(3) remains constant
	(4) first increase and later on decrease
139.	The reason behind the missing orders in a double slit Fraunhoffer diffraction pattern is:
	(1) overlapping of the interference minima with the diffraction maxima
	(2) overlapping of the interference maxima with the diffraction minima
	(3) overlapping of the interference maxima and minima
	(4) overlapping of the diffraction maxima and minima
140.	In the Compton scattering, there is an:
	(1) inelastic collision of a photon with a free e^-
	(2) inelastic collision of a photon with a proton
	(3) inelastic collision of a photon with a neutron
	(4) inelastic collision of a photon with a bound electron of an atom
141	. An elementary particle that experiences only the weak interaction of nature is :
	(1) Neutron (2) Proton (3) Electron (4) Neutrino
142	2. An elementary particle that participate only in the strong interaction is a :
1-44	(1) Quart (2) Gluon (3) Meson (4) Baryon
	(28)

	16P/218/22(1)
143	3. A pure Fermi-transition in the nuclear β -decay is the one where :
	(1) $\Delta J = \pm 1, O^+ \to O^+$ (2) $\Delta J = 0, O^+ \to O^+$
	(3) $\Delta J = \pm 2, O^+ \rightarrow O^+$ (4) $\Delta J > 3, O^+ \rightarrow O^+$
144	Hadrons are the particles which are called as baryons, mesons, hypsons, etc. Their characteristic feature is:
	(1) they always experience electromagnetic interaction
	(2) they always experience weak interaction
	(3) they always experience strong interaction
	(4) they always experience electromagnetic, weak and strong interaction
145.	
	(1) is always a relativistic particle in the free space
	(2) can be made non-relativistic in the free space
	(3) can be made relativistic as well as non-relativistic in the free space
	(4) can be made stationary in the free space
146.	The number of quarks in a typical meson is always: (1) Three (2) Two (3) Four (4) Five
147.	The following nuclear β -decay $\stackrel{6}{He} \rightarrow \stackrel{6}{\underset{1^{+}}{Li+e^{-}}} + \overline{v}$, $ \Delta J = 1$ is an explicit example of the :
	the: 0^+ 1^+ is an explicit example of
	(1) Forbidden transition
	(2) Mixed transition

(3) Pure Fermi transition

(4) Pure Gamow-Teller transition

148.	Geiger's law for the "Range Energy" relationship for the α -particle is well known. Infact, the range R and velocity v of the α -particle are related by :
	(1) $R \alpha v^5$ (2) $R \alpha v^4$ (3) $R \alpha v^3$ (4) $R \alpha v^2$
149.	The typical energy of a γ -ray is :
	(1) Approximately in the range KeV
	(2) Approximately in the range MeV
	(3) Approximately in the range GeV
	(4) Approximately in the range eV
	the taken, for

- (1) 100 days
- (2) 80 days
- (3) 120 days
- (4) 60 days

 $x = F T^{-2}$

•

अभ्यर्थियों के लिए निर्देश

(इस पुरितका के प्रथम आवरण-पृष्ठ पर तथा ओ०एम०आर० उत्तर-पत्र के दोनों पृष्ठों पर केवल **नीली/काली बाल-पाइंट पेन** से ही लिखें)

- 1. प्रश्न पुरितका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुरितका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- 3. उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुरितका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ॰ एम॰ आर॰ पत्र पर अनुक्रमांक संख्या, प्रश्न-पुरितका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुरितका पर अनुक्रमांक संख्या और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार बाल-प्वाइंट पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंवित के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिये इस पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा अंतिम खाली पृष्ठ का
- 12. परीक्षा के उपरान्त केवल ओ० एम० आर० उत्तर-पत्र ही परीक्षा भवन में जमा करें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का / की भागी होगा / होगी।