M.Sc. Molecular Human Genetics.

Set No. 1

Question Booklet No.

16P/288/5

	(To be f	illed up b	y the can	didate by bl	ue/blac	k bali	-point	pen)			
Roll No.	- 7-					53			7		
Serial No.	of OMR	Anewar S	hoot	Code		(430)			
Day and				(20	(ع	•••••	 (Si	ignatu	re of I	nvigila	 tor)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet no. and Set no. (if any) on OMR sheet and Roll No. and OMR sheet no. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this
- 12. Deposit only OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as

Total No. of Printed Pages: 40

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण पृष्ठ पर दिये गए हैं।]

ROUGH WORK एफ़ कार्य

No. of Questions: 150

Time: 2 Hours Full Marks: 450

Note: (1) Attempt as many questions as you can. Each question carries 3

(Three) marks. One mark will be deducted for each incorrect

answer. Zero mark will be awarded for each unattempted question.

- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
- O1. Heat is added to a substance, but its temperature does not increase. Which one of the following statements provides the best explanation for this observation?
 - (1) The substance has unusual thermal properties.
 - (2) The substance must be cooler than its environment.
 - (3) The substance must be a gas.
 - (4) The substance undergoes a change of phase.
- O2. Consider the substances aluminium, copper, steel and wood all at room temperature. Which one would feel the coolest if held in your hand (which is at a temperature above room temperature)?
 - (1) Aluminium

(2) Copper

(3) Steel

(4) Wood

03.	. The temperature of water at the surface of a deep lake is 2°C. The									
	tem	perature expe	ected at the	bottom is	:	10				
	(1)	0° C	(2) 2° C	(3)	4º C	(4) 6°C				
					*	h ala i				
04.	A m	etal sheet wi	th a circular	hole is h	eated, the	noie:				
	(1)	Gets larger		(2)	Gets sma	ller				
	(3)	Remains of	the same size	ze (4)	Gets defo	ormed				
05	. Under which of the following circumstances does a real gas behave									
05.	*									
	like an ideal gas ?									
	(1) The gas particles move very slowly									
	(2) The gas particles do not collide with each other very often									
	(3)	The interac	tion between	n the gas	particles is	negligible	,			
	(4)	The interac	tion betwee	n the gas	particles a	and the walls of t	he			
		container is	s negligible				•			
				in	the same	for molecules of	all			
06					the same	for molecules of				
	gas	ses at a given	temperatur	e:						
	(1)	Mass		(2)	Speed					
	(3)	Momentur	n	(4)	Kinetic	energy				

P.T.O.

	div	diverging lenses ?							
	(1)	Always sn	naller	than the ob	ject				
	(2)	Always la	rger th	an object					
	(3)	Always in	verted						
	(4)	Always vir	tual						
08	mi	object is pla error. Which educed in th	of the	following d	of co	arvature of a ption best de	conca scribe	we spherical es the image	
	(1)	Upright, la			(2)	Inverted of		i1	
	(3)	Upright, la			(4)				
			.		('')	Inverted, sr	naner	, real	
09. A ball is held 1.5m in front of a plane mirror. How far is the image of									
	the	the ball from the ball?							
	(1)	0 m	(2)	0.75 m	(3)	1.5 m	(4)	3.0 m	
10.	Rar	n walks dire	ctly to	wards a pla	ane n	nirror at a sp	eed o	f 0.25 m/s	
	Det	ermine the s	speed o	of the image	rela	tive to him. :			
	(1)	0.13 m/s				0.50 m/s	(4)	0.75 m/s	
11.	Whi	ch of the foll	lowing	Droperties (show	that is a tran			
	(1)	Reflection	J	1 - portico,			svers	e wave :	
	(3)	Diffraction			(2)	Interference			
	` '	modion			(4)	Polarization			

5

07. Which one the following phrases best describes images formed by

12.	Whe	n light is refracted which of the	he fol	llowing does not change:				
	(1)	Amplitude	(2)	Intensity				
	(3)	Frequency	(4)	Velocity				
13.		ch one of the following transfires the largest energy to exc from n =0 to n = 50 from n =1 to n = 4		from n = 1 to n = 2 from n = 100 to n = 101				
14.	Wha	at happens to an atom when i	t emi	ts a photon ?				
	(1) The mass of the atom increases							
	(2)	The mass of the atom remains the same						
	(3)	The mass of the atom decreases						
	(4)	The mass of the atom tempo	rarily	becomes negative				
15.	is s pos (1)	sible values for the orbital qua	m nı antur (2)	the principle quantum number umber is three. What are the number? 3 or 5 only 3,4 or 5 only				
16	Ele	ctronegativity of Co, Co2+ and	Co ³⁺	varies as:				
10.		$Co > Co^{2+} > Co^{3+}$	(2)	$Co^{2+} > Co > Co^{3+}$				
	(3)	$Co^{3+} > Co^{2+} > Co$	(4)	$Co^{3+} > Co > Co^{2+}$				

17	. A	linear molecul	e is :					14			
	(1) CO	(2)	NO	(3)	CO ₂	(4)	NO_2			
18	. Th	ie paramagnet	ic mo	lecule is	:						
	(1)	N ₂	(2)	Li_2	(3)	O_2	(4)	$\mathbf{F_2}$			
19	. cī	v poisoning is	inhib	ited by	,		x2				
	(1)	Injection of	NaNC								
	(2)	Injection of	NaNC)3							
	(3)	Drinking of an aqueous solution of CuSO ₄ . 5H ₂ O									
	(4)										
20	. Ge	ometry of trim	ethyla	amine is	:						
	(1)	Tetrahedral			(2)	Pyramidal					
	(3)	Linear			(4)	V-shape					
21.	Wil	son disease is	cause	ed by the	e toxicit	y of :					
	(1)	Cobalt			(2)	Nickel					
	(3)	Copper			(4)	Aluminiun	n				
22.	Cor	rect statement	is:								
	(1)	High Spin Fe	(ii) is	larger t	han low	snin Fe (ii)					
	(2)	High Spin Fe	(ii) is	smaller	than lo	w snin Fa (;1				
	(3)	Hemerythsin	conta	ins Cob	alt	y Spiri Fe (1	1)				
	(4)	Co (iii) is a po									

23.	2, 4- dinitrophenyl hydrazine is used for the detection of :								
	(1) Aromatic amine	(2)	Nitro group						
	(3) Secondary alcohol	(4)	Keto group						
24. The catalyst ZSM-5 is used as a catalyst in the preparation of									
	(1) BenZene	(2)	Toluene						
	(3) P-Xylene	(4)	Trimethylamine						
25.	Cis and trans isomers can be dete	ected	by the use of technique like:						
	(1) IR	(2)	EPR						
	(3) Mössbauer	(4)	Paper Chromatography						
26.	Natural rubber contains: (1) Propanol	(2) (4)	Propene- 2 Butene- 2						
	(3) Isoprene	180							
27.	Perchlosic acid in H ₂ SO ₄ behave a		Strong acid						
	(1) Weak acid	(2)							
	(3) Weak base	(4)	Strong base						
28	. Itai - Itai disease was first detecte	ed in	:						
20	(1) Italy	(2)	Japan						
	(3) Africa	(4)	China						
29	. The concentration of ozone in at	mos	phere is reduced by its reaction						
	with: (1) CO (2) NO	*	(4) O ₂						

P.T.O.

30	. Ov	Over all order of a reaction of type V = K[A] [B] is:						
	(1)	Zero	(2)	1	(3)	2	(4)	œ
31.	. Mil	ler and Lirey	in the	ir experi	ment to	ok :	2	
	(1)	$\rm H_2$ and $\rm CH_4$			(2)	CH₄ and	H ₂ O	
	(3)	CH ₃ and H ₂	O	(*)	(4)	H _{2,} CH ₄ ,	NH ₃ and	H ₂ O
32.		e first macro	mole	cules to	appear	during	prebiotic	molecular
	(1)	Fats			(2)	Proteins		
	(3)	Carbohydrai	es	**	(4)	Amino A	cids	
33.	33. Mucopeptide present in bacterial cell wall is a polymer made up of alternating units of NAG and NAM joined by:						nade up of	
	(1)	α , 1-4 link	ages		(2)	α, 1-6	linkages	
	(3)	β , 1-4 linka	ges		(4)	β, 1-6 li	inkages	
34.	Mes	osomes in bac	teria	act as a	:			
	(1)	Mitochondria	:					
	(2)	Endospore						
	(3)	Initiator in Di	NA re	plication	and sep	otum forn	nation	
	(4)	Sporangia			-			
								a.

35.	Which of the following are wall-len microbes?							
	(1)	Chlorella and E coli	(2)	Aphanothece and Bacillus				
	(3)	Dunaliella and Mycoplasma	(4)	Dunaliella and Caulobacter				
			100					
36.	Sing	le stranded DNA is present ir	4					
	(1)	TMV	(2)	Reoviruses				
	(3)	λ Phage	(4)	$\phi \times 174$				
37	Whi	ch of the following is thought to	o serv	re as mobile carriers to connect				
07.	the two photosystems in photosynthesis?							
	(1)	Fd	(2)	Cyt b 6 f complex				
	(3)	FNR	(4)	PC				
				and as 'vegetable chameleon':				
38.	Whi	ch of the following pigment is		red as 'vegetable chameleon':				
	(1)	Chlorophyll	(2)	Carotene				
	(3)	Anthocyanin	(4)	Xanthophyll				
39.	Oxv	gen from water is evolved at P	SII dı	ue to change in oxidation states				
	of:	8		•				
	(1)	Fe (2) Mg	(3)	Mn (4) Cu				
	0050 50		hloro	phyll and Carotenoid, indicated				
40	. Wh	ich of the following ratio ior e	111010					
	sha	ade plants :		(4) 4.8				
	(1)	2.5 (2) 5.5	(3)	1.4 (4) 4.8				

41	Kranz anatomy is characteristic feature of :							
	(1)	Sugercane	(2)	Papaya				
	(3)	Tomato	(4)	Polato				
42		e net gain of energy from on piration is:	e gram	n mole glucose during aerobic				
	(1)	36 ATP (2) 38 ATP	(3)	40 ATP (4) 35 ATP				
43.	Ger	minating plant seeds will ha	ve RQ a	as:				
	(1)	Infinity	(2)	Zero				
	(3)	More than one	(4)	Less than on				
44.	Whi	ch of the following are Coenz	zymes i	2				
	(1)	NAD, NADP, FAD, FMN	(2)	Vitamins, Iron, Copper				
	(3)	NAD, Potasium, COA	(4)	NADPH ₂ Calcium, Cobalt				
45.	Whi	ch of the following is highest	N ₂ -fixe	er ?				
	(1)	Azospirillum	(2)	Nostoc				
	(3)	Rhizobium	(4)	Azotobacter				

46.	Which of the following combinations of phylum and description is						
	inco	rrect?					
	(1)	Echinodermata-bilateral symr	netry	as a larva, coelom present			
	(2)	Nematoda-roundworms, pseu	doco	elomate			
	(3)	Cnidaria-radial symmetry, po	lyp a	nd medusa body forms			
	(4)	Platyhelmithes-flatworms, coelom present					
17	7. Acoelomates are characterized by :						
47.	Acoe	elomates are characterized by					
	(1) The asbsence of a brain						
	(2) The asbsence of mesoderm						
	(3) A coelom that is not completely lined with mesoderm						
	(4)	A solid body without a cavity	surr	ounding internal organs			
48.	Whi	ch of the following characteris	stics	is probably most responsible			
		he great diversification of inse					
	(1)	Segmentation	(2)	Antennae			
		Exoskeleton	(4)	Bilateral symmetry			
				Γ.			
49.	. Plai	narians have extra power of re	gene	ration due to the presence of:			
	(1)	Parechyma	(2)	Rhabdites			
	(3)	Neoblasts	(4)	Interstitial cells			

- **50.** Mammals and living birds share all of the following characteristics except:
 - (1) Endothermy
 - (2) Descent from a common amniotic ancestor
 - (3) A dorsal, hollow nerve cord
 - (4) An archosaur common ancestor
- 51. Unlike eutherians, both monotremes and marsupials :
 - (1) Lack nipples
 - (2) Have some embryonic development outside the mother's uterus
 - (3) Lay eggs
 - (4) Are found in Australia and Africa
- **52.** Which of the following is **not** an observation or inference on which natural selection is based?
 - (1) There is heritable variation among individuals
 - (2) Poorly adapted individuals never produce offspring
 - (3) Species produce more offspring than the environment can support
 - (4) Individuals whose characteristics are best suited to the environment generally leave more offspring than those whose characteristics are less suited

- **53.** DNA sequence in many human genes are very similar to the sequences of corresponding genes in chimpanzees. The most likely explanation for this result is that:
 - (1) Humans and chimpanzees share a relatively recent common ancestor
 - (2) Human evolved from chimpanzees
 - (3) Chimpanzees evolved from humans
 - (4) Convergent evolution led to the DNA similarities
- 54. Dryopithecus africanus lived about :
 - (1) 5-10 million

(2) 10-15 million

(3) 15-20 million

- (4) 20-25 million
- **55.** Able or skilful man; The tool maker or Handy man are the names gives to:
 - (1) Homo habilis
 - (2) Homo erectus
 - (3) Homo sapiens neanderthalenesis
 - (4) Homo sapiens fossilis
- 56. Peaks of LH and FSH production occur during:
 - (1) The beginning of the follicular phase of the ovarian cycle
 - (2) The period just before ovulation
 - (3) The end of the luteal phase of the ovarian cycle
 - (4) The secretory phase of the menstrual cycle

٠		15		P.T.O.					
	(3)	Metaphase	(4)	G1 phase					
	(1)	S phase	(2)	Prophase					
61.	Colc	hicines treated cells are arrest	ted i	n which stage:					
			(4)	Dorsal lip of the blastopore					
	(3)	Archenteron roof		Notochord					
	(1)	Neural tube	(0)	Notani 1					
***************************************	"org	anizer" is located in the :	am	phibian embryo, Spemann's					
60.	In 1	the early development of	s 82 0 000000						
	(4)	The fusion of egg and sperm							
	(3) The release of hydrolytic enzymes from the sperm								
	(2) The production of a fast block to polyspermy								
2	(1) The formation of a fertilization envelope								
59.	. The	cortical reaction of sea urchi	n eg	gs functions directly in :					
	(0)	In the third trimester	(4)	During the blastocyst stage					
	(3)		(2)	a model					
55	. Du								
58	58. During human gestation, rudiments of all organs develop:								
	(4)	Different cell types produce	d by	meiosis					
	(3)			The second secon					
	(2)	Meiotic divisions required to	pro	oduce each gamete					
	(1)	Functional gametes produce	ed b	y meiosis					
		d oogenesis ?		oor the same in spermatogenesis					
57	. Fo	. For which of the following is the number the same in spermatogenesis							

- 62. Which of the following statement is not true?
 - (1) The ratio of T to A in double-stranded DNA is 1:1
 - (2) The ratio of T in double-stranded DNA to U in single stranded RNA is 1:2
 - (3) The ratio of Uto A in single stranded RNA is 1:1
 - (4) The ratio of Gto C in double stranded DNA is 1:1
- 63. The action potential results from:
 - (1) Decrease in negative charge inside the nerve fibre
 - (2) Increase in positive charge outside the nerve fibre
 - (3) Opening of voltage gated sodium channels
 - (4) Activation of the sodium potassium pump
- **64.** DNA polymerization requires the presence of template and a free 3'OH end, this end may be generated by:
 - (P) Synthesis of an RNA primer at the origin or at Okazaki fragment start points
 - (Q) Nicking one strand of duplex DNA followed by strand displacement
 - (R) By loop formation at the 3' end (self priming)
 - (S) Binding of a terminal nucleotide carring protein to the 3' end of templet
 - (1) P,Q,R,S

(2) R,S

(3) P,R

(4) P,Q

65.	6. Movement of a DNA fragment from one site of the genome to another						
		called :					
	(1)	Mutation			(2)	Transposition	
	(3)	Translocati	on		(4)	Reversion	
66.	Mu	itation is the	chang	ge in :			
	(1)	Genetic dri	ft		(2)	Gene frequenc	у
	(3)	Base pairs	in the	DNA	(4)	None of them	
	for (1) White (1) T	a single cycle 90 sec ch one of the che concentra	PCR (2) followation	ze 9000 b reation : 9 sec wing state of cytoso tolipase C	(3) ement re	is 1Kb per minushould be the established by calmo	extension time 4) 90 min correct? decreased by
	(3)	Intracellular					
	(4)	Intracellular extracellular	conc	entration	of Ca ²	is higher than	that of the
		*		17	,		PTO

- 69. Which of the choices are true?
 - (P) Kinesin walks from (-) end to the (+) end
 - (Q) Dynein walks from (+) end to the (-) end
 - (R) Kinesin walks on microtubles
 - (S) Dynein walks on microtubles
 - (1) Ponly

(2) P and Q

(3) P,Q,R and S

(4) Q and R

70. COP-I coated vesicle involved in:

- (1) Anerograde transport
- (2) Retrograde transport
- (3) Transport from ER to golgi
- (4) Uptake of extracellular materials

71. Receptor tyrosine kinases:

- (P) Have a cytoplasmic kinase domain
- (Q) Forms tetramer upon ligand binding
- (R) Change conformation of their cytoplasmic domains upon ligand binding
- (S) Catalystically active after the conformational change
- (1) P and Q
- (2) Q and R
- (3) P,R and S
- (4) P,Q,R and S

- 72. Which of the following does not occurs when cell enters M phase:
 - (1) Chromatin condenses
 - (2) Spindle is formed
 - (3) Histone H1 is dephoshorylated
 - (4) The nuclear envelop, the endoplasmic reticulum and the golgi break down
- 73. Crossing over at the time of meiosis I will cause:
 - (1) Independent assortment of gene
 - (2) Linkage between genes
 - (3) Recombination of linked genes
 - (4) Both independent assortment and recombination of genes present on non-homologue chromosome
- 74. Comparative genomic hybiridization is a technique to look for certain type of genetic changes in cancer cells by comparing the DNA from the cancer cells with that of corresponding normal cells. Which types of genetic changes are detected here?
 - (1) Gene deletion and amplification
 - (2) Base mismatch
 - (3) Promoter methylation
 - (4) Loss of single base

- 75. The fact that DNA polymerase I from E. colihas a 5'-3' exonuclease activity:
 - (1) Implies that the enzyme has multiple subunits
 - (2) Makes the enzyme to able to detect thymine dimers in double stranded DNA
 - (3) Implies that DNA polymerase I can use both DNA and RNA as primers
 - (4) Enables the enzyme to play an important role in DNA replication
- 76. Mitochondrial DNA is replicated from:
 - (1) Two different ori sites in same direction
 - (2) A single ori site bidirectionally
 - (3) Two different ori sites at different times in opposite directions
 - (4) Many sites bidirectionally
 - 77. Which of the following genome features increase as the complexity of an organism increase?
 - (P) Genome size
 - (Q) Number of genes
 - (R) Density of genes in the genome
 - (S) Average size of individual genes
 - (1) P,Q

(2) P,S

(3) P,Q,S

(4) Q,R,S

=0	•	1		
78.	Gene	dup.	lication	1

- (P) Has occurred many times in eukaryotic genomes
- (Q) Critical for creating new genes
- (R) Creates gene families
- (S) Occurs only within gene cluster
- (1) P,Q

(2) P,S

(3) P,Q,S

(4) P,Q,R

- 79. C-Bands are deeply stained chromosomal regions which represents :
 - (1) Euchromatin
 - (2) Constitutive heterochromatin
 - (3) Cytosine dominant region of chromosome
 - (4) Metaphase chromosome
- 80. Human genomic DNA is digested into fragments approximately 1Kb in size, denature and then renatured. Which of the following statement is true?
 - (1) All fragment will renaturate at the same rate
 - (2) Fragments composed largely of repetitive DNA sequences will renature fastest
 - (3) Fragments composed largely of non- repetitive DNA sequences will renature fastest
 - (4) Fragments with high A: T content will renature fastest

81.		TATA box plays a key role in assembling active transcription plex by:
	(1) (2) (3)	Binding with TATA box-binding protein Binding with DNA protein Binding with RNA protein
	(4)	It does not bind with any protein
82.	Hist (1) (2) (3)	one acetylation increases transcription of gene because: It increases the DNA-histone interaction The acetyl groups on histones are recognized by RNA polymerase Histone acetylation loosens the DNA-histone complex, thereby making it more accessible to RNA polymerase
	(4)	Histone acetylation induces DNA bending which is recognized by RNA polymerase
	chil	nism is a recessive human trait. If a normal produces an albino d, what is the probability that their next child will be albino? 1/4 (2) 1/8 (3) 1/16 (4) 1/64
84	dar (1)	ich of the following chromosomal changes is usually the most maging when in the homozygous condition? Deletion (2) Duplication Translocation (4) Inversion
		22

P.T.O.

		23		D.m.o.		
	(3)	Genome	(4)	Linkage group		
	(1)	Genotype	(2)	Phenotype		
89.		ploid set of all the genes pare	nt in	a gamete is called:		
				·		
	(4)	Cross between F2 with one of				
	(3)	Cross between F1 and one of				
	(2)	A cross between an F1 indivi				
	(1)	A cross between F1 individua	al an	d F2 individual		
88.	The	back cross is:				
	(3)	Dominance	(4)	Incomplete dominance		
	(1)	Segregation	(2)	Independent assortment		
87.	The	monohybrid genotypic ratio	1:2:1	in F2 generation indicates :		
	0227		101 6			
	(1)	3:1 (2) 1:2:1	(3)	9:3:3:1 (4) 2:1		
86.	The	phenotypes ratio in F2 of a n	nonol	nybrid cross is :		
	(4)	Hybridization of the membra	ane w	vith labelled probe		
	(3)	Transfer of the DNA fragmer	nts to	a nitrocellulose membrane		
	(2)	Separation of the DNA fragn		¥1		
	(1)	Ligation of the DNA into a vector				
00.	** 111	ich is not a step in southern		ng procedure r		

90.	A do	A dominant trait is expressed in :					
	(1)	Homozygous state only					
	(2)	Heterozygous state only					
	(3)	Neither homozygous nor hete	rzyg	ous states			
	(4)	Both homozygous and hetero	zygoı	us states.			
91.	Sou	rce of Mendelian inheritance i	s:				
	(1)	Linkage	(2)	Independent assortment			
	(3)	Mutations	(4)	Dominant traits			
				n			
92.	Cros	ssing over occurs during:					
	(1)	Pachytene	(2)	Diplotene			
	(3)	Diakinesis	(4)	Leptotene			
00	Cmo	ssing over is more frequent in	:				
93.			(2)	Females			
	(1)	Males	* : **	None of these			
	(3)	Both	(4)	Notic of choos			
94.	Chr	omosome ends are called :					
	(I)	Satellites	(2)	Telomeres			
	(3)	Centromeres	(4)	Kinetochores			
95.	Ch	romatid is:					
	(1)	One half of chromosome	(2)	Haploid chromosome			
	(3)	Complete chromosome	(4)	Duplicate chromosome			

90.	A C.	momosome with sub-terminar	cem	romere is:
	(1)	Acentric	(2)	Acrocentric
	(3)	Metacentric	(4)	Telocentric
97.	A n	ormal woman is married to a	colou	ar blind man. The children are
	exp	ected to be:		
	(1)	All normal		*
	(2)	50% sons are colour blind		
	(3)	All daughters are normal but	carri	er whereas all sons are normal
		phenotypically as well genoty	ypica	ılly
	(4)	50% daughters are colour bli	ind	
98.	Klir	efelter's syndrome is characte	rized	by chromosome :
	(1)	46 (2) 45	(3)	47 (4) 48
00	Th	1		
99.		sex chromosome complement	of T	urner's syndrome is :
	(1)	Normal female		
	(2)	Normal male		
	(3)	A female with rudimentary ov	varie	s and underdeveloped breast
	(4)	A male with rudimentary test		
100	.A sı	permale has a genetic constitu	ation	of:
	(1)	XY	(2)	XXY
	(3)	XXYY	(4)	XYY
			ā	
	٠			
		* 100 m		

101. Prod	ess of genetic mutation is:		w.	
(1)	Reversible	(2)	Irreversible	
(3)	Partially reversible	(4)	Continuous	
102. Whi	ch one can reverse the harmfu	al effe	ect of previous mutation ?	
(1)	Intergenic mutation	(2)	Intragenic mutation	
(3)	Suppressor mutation	(4)	Indirect suppression	
103. Dele	etion of certain genes cause :			
(1)	Gene mutation	(2)	Chromosome mutation	
(3)	Gene modification	(4)	Aneuploidy	
104. Gen (1)	chloroplast genome Nuclear genome	(2)	pants are located in : Mitochondrial genome Cytosol	
			1000	
105. A n	nutation at a gene locus chan	ges a	character due to change in :	
(1)	DNA replication	(2)	Protein synthesis pattern	
(3)	RNA transcription pattern	(4)	Protein structure	
106. Map distance of genes is calculated by :(1) Number of mutant genes				
(1)				
2000.00	nercentage			
(4)	n hingtion frequency of	f eacl	n gene locus	

107. Phenylketonuria is genetic disorder caused by a defect in metabolism						
C	of:					
(1)	Fatty acid	(2)	Polysaccharides		
(3)	Amino acid	(4)	Vitamins		
108. Philadelphia chromosome occurs in patients suffering from :						
(1)	Leukemia	(2)	Rickets		
(;	3)	Hepatitis	(4)	Albinism		
109.L	ink	tage prevents :				
(1	1)	Homozygous condition	(2)	Segregation of alleles		
(3	3)	Hybrid formation	(4)	Heterozygous condition		
110. M	len	del did not observe linkage di	ue to			
(1	.)	Mutation	(2)	Synapsis		
(3	3)	Crossing over	(4)	Independents assortment		
111. Histidine is often found at the active site of enzyme because :						
(1		It has a cyclic group	(2)	It can form hydrogen bonds		
(3))]	It has pKa of 6.8	(4)	It is an amino acid		
		**				

- 112. Haemoglobin and Myoglobin both have all of the following characteristics except:
 - (1) Consists of subunits designed to provide hydrogen bond and non polar interactions with other subunits
 - (2) Highly alpha helical
 - (3) Blind one molecules of heme per globulin molecule
 - (4) Bind heme in a hydrophobic pocket
- 113. DNA molecules contains a lysine residue that is important for binding to DNA. Mutations were found that converted this lysine to either glutamate, glycine, valine, or arginine. Which mutations would be predicted to be the most and least harmful to the ability of the enzyme to bind DNA:

	MOST	LEAST
(1)	Glycine	Arginine
(2)	Arginine	Glycine
(3)	Glutamate	Valine
(4)	Glutamate	Arginine

114. According to the RNA- World theory:

- (1) RNA molecules were the first organic molecules formed on earth
- (2) Life evolved on another planet called the RNA- World
- (3) All RNA molecules in cell are 'ribozymes'
- (4) Primitive RNA molecules are evolved before protein and DNA

- 115. A structural characteristic common to lipids which allow them to function as a good energy source is:
 - (1) They are all hydrophobic
 - (2) They are all hydrophilic
 - (3) They have large numbers of Carbon- Phosphorus bonds
 - (4) They have large numbers of Carbon Carbon bonds

116. The beta oxidation of molecules of palmitic acid:

- (1) Yields 8 molecules of Acetyl CoA
- (2) Yields 16 molecules of Acetyl CoA only
- (3) Yields Carbon dioxide and water only
- (4) Does not involve oxygen

117. Which of the following is **not** correct about fatty acid degradation and biosynthesis ?

	Degradation	Biosynthesis
(1) Location of pathway in cell	mitochondrion	Cytosol
(2) Electron acceptor or donor used	FAD, NAD+	NADPH
(3) Participation of CO ₂	No	Yes
(4) Carrier of intermediate acyl groups	ACP-(SH) ₂	CoA-SH

- 118. Thermogenin, the natural uncoupler in brown fat mitochondria, generates heat based on its ability to:
 - (1) Inhibit electron transport by binding to b-type cytochromes
 - (2) Allow protons to re-enter into the mitochondrial matrix
 - (3) Inhibit ATP production by binding to the ATP synthase
 - (4) Block electron transport by flavoproteins

119. Choose the mismatch

INHIBITOR FUNCT	TON
(1) Malonate prevent oxida	tion of succinate
(2) Cyanide inhibits Cytoc	hrome oxidase
(3) Oligomycin inhibit ATP sy	nthase
(4) Rotenone blocks CoQ-cy	rt c oxidoreductase

- 120. What happens in Uncompetitive inhibition:
 - (1) Vmax remains constant and Km increases
 - (2) Vmax decreases and Km remains constant
 - (3) Both Vmax and Km increases
 - (4) Apparent Vmax and Km both decreases
- 121. Lysine is an amino acid with three ionizable groups. These are the α -COOH, 2 α -amino and ϵ amino groups with pKa values of 2.2, 9.2 and 10.8 respectively. The isoelectric point (pl) for lysine is :
 - (1) 5.7
- (2) 6.5
- (3) 9.2
- (4) 10.0

122. Th	e production of ATP from ADP, v	witho	ut involving oxidation of NADH,			
is	is called:					
(1)	Oxidative phosphorylation	Oxidative phosphorylation				
(2)	Electron transport reaction					
(3)	Substrate level phosphoryla	tion				
(4)	β -oxidation					
123. In photosynthesis primary photochemistry and charge separation takes place at:						
(1)	Electron transport chain	(2)	Photosystem I			
(3)	Photosystem II	(4)	Photosystem I and II both			
124.Bes	124. Beside nucleus, DNA is also present in :					
(1)	Ribosomes	(2)	Lysosomes			
(3)	Mitochondria	(4)	Golgi Complex			
125. Cpc	G Island is usually found in the	e:				
(1)	(1) Promoter region of eukaryotic genes					
(2)	Exons of eukaryotic genes					
(3)	(3) Promoter region of prokaryotic genes					
(4)	Plasmids					
8	2.1					

126	Und	er the annerobic condition no	mivat	e is converted into which one		
126. Under the anaerobic condition pyruvate is converted into which one						
	of the following products ?					
	(1)	Acetyl CoA	(2)	Lactate		
	(3)	Phosphoglycerate	(4)	Citric acid		
127.	Dear	mination of adenine leads to t	he fo	rmation of:		
	(1)	Xanthine	(2)	Hypoxanthine		
	(3)	Uracil	(4)	Cytocine		
128.	The	primer of lagging strand durin	ng DI	NA replication is removed by :		
	(1)	DNA primase				
	(2)	3' to 5' exonuclease activity of pol III				
	(3)	5' to 3' exonuclease activity of DNA pol I				
	(4) 3' to 5' exonuclease activity of DNA					
129	.Wh	ich of the following is comm	om 1	to both E.coli and eukaryotic		
	chr	omosomes ?				
	(1)	DNA is circular				
	(2)	DNA is contained in the sup				
	(3)	DNA is contained in the nuc				
	(4)	DNA is packaged into the no	ucleo	somes		
		₅₀ 54	_			

130. Which of the following is a cofactor:									
	(1)	NAD	(2)	NADP					
	(3)	Mg ⁺⁺	(4)	All of the above					
131. In C ₄ plants, phosphenol pyruvate carboxylase is located in:									
	(1)	28.	(2)	Chloroplast					
	(3)	Peroxisome	(4)	. Mitochondria					
132. Which of the following lipoproteins is termed 'good' cholesterol?									
	(1)	HDL	(2)	Triglycerides					
	(3)	LDL	(4)	VLDL					
133. The 3' end of each Okazaki fragment is joined to the 5' end of the next fragment by:									
	(1)	DNA repair enzymes	(2)	RNA polymerase					
	(3)	Helicase	(4)	DNA ligase					
134. Which of the following does not happens during hnRNA processing?									
	(1)	Ribosomes bind and begin translation							
	(2)	A poly A tail is added							
	(3)	A 7-methylguanosine cap is added to the 5' end of the RNA							
	(4)	Introns are spliced out							
ø		100							

135. The wobble hypothesis states that:								
(1)	There are too many tRNAs present to account for the number of							
	amino acids							
(2)	tRNAs wobble when attached to an mRNA							
(3)	Several mRNA codons may pair with a single transfer RNA							
(4)	an mRNA codon may pair with more than one transfer RNA							
136. The genetically modified crop known as 'golden rice' contains genes								
for	biosynthesis of:							
(1)	riboflavin	(2)	nicotinamide					
(3)	vitamin A	(4)	β- carotene					
137. Discovery of Interference RNA fetched Nobel prize of 2006 in								
'Physiology or Medicine' to :								
(1)	Khorana & Watson	(2)	Doherty & Zinkernagel					
(3)	Yonath & Ramakrishnan	(4)	Fire & Mello					
138. Recombination activating genes 1&2 are exclusively expressed in :								
(1)	anhores	(2)	Dendritic cells					
(3)	hoovites	(4)	Eosinophils					
	34							

139. Hematopoietic stem cells are:										
(1) Mutipotent	(2) Unipotent							
(3) Pluripotent	(4) Totipotent							
140. Gene therapy for 'Bubble baby disease' in children involves :										
(1	Terminal deoxynucleotidyl transferase									
(2	Plasminogen activator	Plasminogen activator								
(3)	3) Adenosine deaminase									
(4)	(4) Factor VII									
141. The 2012 Noble prize in Physiology or medicine for study of induced stem cells was awarded to :										
(1)	Yamanaka & Gurdon	(2)	Tonegawa & Hozumi							
(3)	Brenner, Horvitz & Sulston	(4)	Hershko & Ciechanover							
142.RNAi was first discovered in:										
(1)	Coenorhabditis elegans	(2)	Bacillius thuringiensis							
(3)	Azospirillum braziliense	(4)	Escherichia Coli							

143. Following cells are used as fusion partner for hybridoma technology:									
(1)	SP2O	(2)	K562	(3)	Jurkat	(4)	U937		
144. Following worker demonstrated that Immunoglobulin genes undergo									
rearrangement:									
(1)	E. Metchnik	coff		(2)	J. Bordet				
(3)	S. Tonegawa	a		(4)	N. Jerne				
145. Sulfolobus acidocaldarius is employed in metal extraction because it :									
(1)	Oxidizes Co	7	(2) Oxidizes Sulphur and Iron						
(3)	Oxidizes U	raniu	m	(4)	Oxidizes	Molyba	lenum		
146. Sigma factor is released from bacterial RNA polymerase after adding									
about:									
(1)	100 nucle	otide	S) 50 nucle				
(3)	10 nucleo	tides		(4	5 nucleo	otides			
					¥				

147. Nicks in DNA strands can be sealed by:									
((1)	Alkaline phosphatase				RNase			
((3)	Taq DNA polymerase				Ligase			
148. Which one of the following lacks 3' → 5' exonuclease activity:									
(1)	RNA polymerase I (2) DNA polymerase I							
(3)	DNA polymerase III (4) Klenow enzyme							
149. The first basal transcription factor to bind to TATA box is :									
(1	1)	TFIIE	(2)	TF II F	(3)	TF II D	(4)	TF II B	
150. Cernunnos is a :									
(1	!)	Non- homologous end-joining factor							
(2	?)	Nuclease							
(3)	Ligase							
(4))	Polymerase ·							

ROUGH WORK रफ़ कार्य

ROUGH WORK रफ़ कार्य

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली-काली बाल-प्वाइंट पेन से ही लिखें)

- प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों
- ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्नपुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्नपुस्तिका पर अनुक्रमांक और ओ॰ एम॰ आर॰ पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमित
- उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित
- प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिए आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये
- 9. प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो संबंधित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य
- 11. रफ कार्य के लिए प्रश्न-पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ
- 12. परीक्षा के उपरान्त केवल ओ एम आर उत्तर-पत्र परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।