RET/15/Test B

Biochemistry 887

Question Booklet No.

	(To be fille	d up by the candidate b	y blue/black ball-point pen)
Roll No.			
Roll No. (Writ	e the digits i	n words)	
Serial No. of	OMR Answe	r Sheet	
Day and Date			(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 10 minutes of the issue of the Question Booklet, Please ensure that you have got the correct booklet and it contains all the pages in correct sequence and no page/question is missing. In case of faulty Question Booklet, bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and Roll No. and OMR sheet No. on the Question Booklet.
- 7. Any changes in the aforesaid-entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. This Booklet contains 40 multiple choice questions followed by 10 short answer questions. For each MCQ, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the first page of the Answer Sheet. For answering any five short Answer Questions use five Blank pages attached at the end of this Question Booklet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero marks).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end
- 12. Deposit both OMR Answer Sheet and Question Booket at the end of the Test.
- 13. You are not permitted to leave the Examination Hall urtil the end of the Test.
- 14. If a candidate attempts to we are form of unfair means, le/she shall be liable to such punishment as the University may determine and impose on hir/her.

FOR ROUGH WORK

Bio	chem	istry					Code No. : 887
1.		oprene is poly Orlon		(3)	ABS	(4)	All of these
2.	(1)	reagent that of Bromine wate Tollen's reage		(2)	between Gluc Fehling's sol Phenyl hydr	ution	d Fructose is :
3.	(2)	The lysosoma The lysosom cytoplasm The lysosoma	if a lysosome leal l enzymes will dig al enzymes will l enzymes will be icidal bag will ma	gest cell of become	organelles nonfunction	11	pH 7.4 of the
4.	Oxy (1) (2) 1 (3) (3)	gen evolved of Splitting of wa Breakdown of	luring photosynth ater molecules carbon dioxide s accumulated by	esis in pl	lants comes fi		
5.	(-) -	contribution o Plant classifica Cell structure	f Gregor Johann M tion	(2)		e area (of:
6.	(1) I	alaya is : <i>Paleozoic tec</i> to ndian mounta	in	(2) R (4) I	Recent Folded Eurasian moi	mount	
7.	one p (1) re	emain T	simple harmonic me period is T. If continue the simp (2) become 2T	motion the spri le harmo	under the renge is dived in onic motion, to become T/2	storing n two e	qual parts and period will:
8.	The e ice po (1) 36	efficiency of the sint is: 5.81%	e Carnot's engine (2) 26.81%			e steam	point and the
0				(3) 4	0%	(4) 16	5.8%
Э.	$\begin{array}{c} \text{If } \mathbf{a} = \\ \text{(1)} 4 \end{array}$	21 – 3J + 4K a 5°	and $\vec{b} = 3i + 2j$, the (2) 90°	en the an	gle between a		
RET/1	5/Test	t-B/887	(2		, 200	(4) 12	?O°

Research Entrance Test - 2015

No. of Questions: 50

Time: 2 Hours

Full Marks: 200

Note: (i) This Question Booklet contains 40 Multiple Choice Questions followed by 10 Short Answer Questions.

- (ii) Attempt as many MCQs as you can. Each MCQ carries 3 (Three) marks. 1 (One) mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question. If more than one alternative answers of MCQs seem to be approximate to the correct answer, choose the closest one.
- (iii) Answer only 5 Short Answer Questions. Each question carries 16 (Sixteen) marks and should be answered in 150-200 words. Blank 5 (Five) pages attached with this booklet shall only be used for the purpose. Answer each question on separate page, after writing Question No.

10.	The value of the in	tegral $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}$	()S X	dx is	
	(1) π		(3)		(4) $-\frac{\pi}{4}$
11.	The smooth ER is e of :	especially abundant	in cel	lls that synthesis	ze extensive amounts
	(1) Toxins	(2) Proteins	(3)	Enzymes	(4) Lipids
12.	The cytoskeleton in	ncludes all of the foll	owin	g except :	
	(1) Microtubules		(2)	Actin filaments	3
	(3) Myosin filamer	nts	(4)	Intermediate fi	laments
13.	with the waveleng		e a h		specimen interfering age without the need
	(1) Phase contrast	microscopy	(2)	Bright field mid	croscopy
	(3) Fluorescence m	nicroscopy	(4)	Electron micro	scopy
14.	Which of the follow they are bound to a		not s	stimulate an imr	nune response unless
	(1) Antigen	(2) Virus	(3)	Hapten	(4) Antibody
15.	Monoclonal antibo	dies recognize a sing	gle :		
	(1) Antigen	(2) Bacterium	(3)	Epitope	(4) Virus
16.	The initial complantibodies is:	ement component	that	is bound by	complement-fixing
ž	(1) C1q	(2) C1s	(3)	C3b	(4) C5a
17.	The first productio was achieved by:	n of live but non-vi	ruler	nt forms of chic	ken cholera bacillus
	(1) Salk	(2) Pasteur	(3)	Jenner	(4) Montague
RET/1	5/Test-B/887	(3)			
					P. T. O.

18.	What is the test used to verify HIV -positive	test results obtained by ELISA?
	(1) Ouchterlony test (2)	Immunoelectrophoresis
	(3) Southern blot (4)	Western blot
19.	with whole cell antigens? (1) Agglutination (2)	when specific antibodies are mixed Precipitation Complement fixation
20.	mt DNA is: (1) Simple, double stranded linear DNA mol (2) Simple, single stranded linear DNA mol (3) Simple, single stranded circular DNA mol (4) Simple, double stranded circular DNA mol	ecule olecule
21.	When the amino acid alanine (R-group is Coof 7.3, alanine becomes:	H ₃) is added to a solution with a pH
	(1) a cation (2) nonpolar (3)	a zwitter ions (4) an isotope
22.	Which of the following is an example of terti	ary structure in a protein?
	(1) Multimeric protein (2)	α-helix
	(3) β-pleated sheet . (4)	Globular domain
23.	If the egg white protein, ovalbumin, is downlich of the following is least affected?	enatured in a hard-boiled egg, then
	(1) The primary structure of ovalbumin	
	(2) The secondary structure of ovalbumin	
	(3) The tertiary structure of ovalbumin	
	(4) The quaternary structure of ovalbumin	
24.	. Saliva contains all of the following except:	
27.	(1) hormones (2)	amylase
	(3) bacteria-killing enzymes (4)	antibodies
	(1)	
RET	:T/15/Test-B/887	

25.	Which cells of the brain are called fir	st line of defence?
	(1) Bipolar cells	(2) Purkinjee cells
	(3) Glial cells	(4) Pyramidal cells
26.	Mylenation of Peripheral nervous sy	stem is done by which of the following :
	(1) Oligodendrocytes	(2) Astroglia
	(3) Microglia	(4) Schwan cells
27.	r (olde o ke) is naving	one BamH1 and one EcoR1 site 2 kb apart enzymes, then how many fragments will be
	(1) One fragment of 5 kb	(2) Two fragments of 2 kb
	(3) Two fragments of 2 kb & 3 kb.	(4) One fragments of 4 kb
28.	Which chemical is used to visualize I	DNA in agarose gel under UV light ?
	(1) Cynogen bromide	(2) Ethidium bromide
	(3) Ethyl methane sulphonate	(4) Hydrazine
29.	Termination step of E.coli replicat protein:	ion requires the following DNA binding
	(1) Helicase	(2) Dna B protein
	(3) TUS	(4) Dna G protein
30.	Transcription and translation occur i cycle:	n the following stage of the eukaryotic cell
	(1) M phase (2) Gl phase	(3) S phase (4) G2 phase
31.	Transcription factor TFIIIA has follow	ving DNA binding metif:
	(1) Helix-turn-helix	(2) Helix-loope-h e lix
	(3) Zinc finger	(4) Leucine zipper
32.	Which of the following is the catalytic	amino acid residue of Lysozyma 2
	(1) Tryptophan 62	(2) Glutamic acid 35
	(3) Serine 57	(4) Histidine 24
RET/	15/Test-B/887 (5	
	(0	P.TO

33.	Allosteric effect of CTP on ACTase is called:					
	(1) Homotropic activation	(2) Homotropic inhibition				
	(3) Heterotropic activation	(4) Heterotropic inhibition				
34.	Protein kinases:					
	(1) Transfer a phosphoryl group from o	ne protein to another				
	(2) Use AMP as a substrate					
	(3) Use Thr, Ser or Tyr as acceptor grou	p for phosphoryl transfer				
	(4) Transfer the α -phosphrous atom of .	ATP				
35.	Fumarase belongs to which major class	according to enzyme commission?				
	(1) Transferase (2) Hydrolase					
36.	Protamine sulphate treatment is used to	- 100 - 100				
30.	(1) Lipids	(2) Nucleic acids				
	(3) Bile pigment	(4) Protein				
37.	Estimate k, the first order rate constant $4.6 \text{ micromoles/liter/min}$ and $\text{Km} = 2 \times 10^{-6} \text{ micromoles/liter/min}$	for an enzyme preparation with Vmax of 10 ⁻⁶ M.				
	(1) 2.3/min (2) 0.23/min	(3) 9.2/min (4) 3.8/sec				
38.	Which active site group of enzyme is m	(2) -OH group				
	(1) –SH group	(4) Immidazole group				
	(3) Guanidino group	(4) minutazore group				
39.	If I binds only after S, I will be?					
	(1) Non-competitive	(2) Competitive				
	(3) Uncompetitive	(4) Linear mix type				
40	Upon immobilization of enzyme what	changes occur in the kinetic behavior?				
40.	(1) Km increases	(2) Km decreases & V _{max} unchanged				
	(3) Both Km & V _{max} decrease	(4) Both Km & V _{max} increase				
	10)				
RET	RET/15/Test-B/887					

Attempt any five questions. Write answer in 150-200 words. Each question carries 16 marks. Answer each question on separate page, after writing Question Number.

- 1. Describe briefly the role of nuclear membrane in maintenance and transport of the nucleoprotein complexes with suitable examples.
- **2.** Explain how the DNA transposon and retrotransposon differ in their mechanism of mutagenesis?
- 3. Explain a technique for determining for Protein DNA binding site.
- **4.** Explain the role of cAMP in the control of expression of lac operon.
- 5. Write some of the characteristic reaction of monosaccharide.
- **6.** What is the structure of different types of phospholipids? Which one is characteristically found in the inner wall of mitochondria?
- 7. What is chemical triad? Illustrate your answer with suitable example.
- 8. Draw the structure of vitamin B12 as a coenzyme.
- 9. Derive Scatchard plot to study the degree of cooperativity.
- 10. Deduce an equation for linear mixed type of enzyme inhibition.

RET/15/Test-B/887

(7)

Roll No.	
HULL IVO.	

Roll No.	·	
----------	---	--

Roll No.:	

Roll No.:		

Roll No.:		

FOR ROUGH WORK

