RET/15/Test B

896 Statistics

Question Booklet No.

50

(To be filled up by the candidate by blue/black ball-point nen)

7-	, , , , , , ,	 - Diadit Dan point pont	
Roll No.			
Roll No. (Write	the digits in words)	 	
		(Signature of Invig	gilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 10 minutes of the issue of the Question Booklet, Please ensure that you have got the correct booklet and it contains all the pages in correct sequence and no page/question is missing. In case of faulty Question Booklet, bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and Roll No. and OMR sheet No. on the Question Booklet.
- 7. Any changes in the aforesaid-entries is to be verified by the invigilator, otherwise it will be
- 8. This Booklet contains 40 multiple choice questions followed by 10 short answer questions. For each MCQ, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the appropriate circle in the corresponding role of the Answer Sheet. For answering any five short Answer and of this Quarties Root let Questions use five Blank pages attached at the end of this Question Booklet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded
- 11. For rough work, use the inner back page of the title cover and the blank page at the end
- 12. Deposit both OMR Answer Sheet and Question Booklet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 13. You are not permitted to leave the label to use any form of unfair means, he/she shall be liable to such the University may determine and impose on him/her.

Total No. of Printed Pages: 19

Research Entrance Test – 2015

No. of Questions: 50

Time: 2 Hours Full Marks: 200

Note: (i) This Question Booklet contains 40 Multiple Choice Questions followed by 10 Short Answer Questions.

- (ii) Attempt as many MCQs as you can. Each MCQ carries 3 (Three) marks. 1 (One) mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question. If more than one alternative answers of MCQs seem to be approximate to the correct answer, choose the closest one.
- (iii) Answer only 5 Short Answer Questions. Each question carries 16 (Sixteen) marks and should be answered in 150-200 words. Blank 5 (Five) pages attached with this booklet shall only be used for the purpose. Answer each question on separate page, after writing Question No.

1.	Neoprene is polym	er of:				2.78		
	(1) Orlon	(2) SAN	(3)	ABS	(4)	All of these		
2.	The reagent that ca	n be used to disti	nguish l	between Glucos	e and	d Fructose is:		
	(1) Bromine water			Fehling's soluti				
	(3) Tollen's reager		(4)	Phenyl hydraz	ine			
	19 100		e incide	the cell?				
3.	What will happen							
	(1) The lysosomal	enzymes will dig	gest cell	organelles				
	(2) The lysosoma	l enzymes will	becom	e nonfunctional	at	pH 7.4 of the		
	cytoplasm							
	(3) The lysosomal enzymes will be secreted out of the cell							
	(4) The leaked suicidal bag will make cell to commit suicide							
4.	Oxygen evolved d	luring photosynth	nesis in	plants comes fro	m:			
	(1) Splitting of w							
	(2) Breakdown of carbon dioxide							
	(3) Carbohydrates accumulated by plants							
	(4) Lipids							
5.	The contribution	of Gregor Johann	Mende	l is related to the	e are	a of:		
٥.	(1) Plant classific		(2	2) Genetics				
			(4	4) Plant functio	ns			
	(3) Cell structure	3						
6				~ · · · · · · · · · · · · · · · · · · ·	.d m	ountain		
	(1) Paleozoic teo	ctonic mountain		2) Recent Folde				
	(3) Indian mou		((4) Eurasian mo	unta	AIII		
			(2)					
RE	T/15/Test-B/896							

7.	A particle executes simple harmonic motion under the restoring force provided					
	by a spring. The time period is T. If the spring is dived in two equal parts and					
	one part is used to continue the simple harmonic motion, the time period will:					
	(1) remain T		(2)	become 2T		
	(3) become T/2		(4)	become $T/\sqrt{2}$		
8.	The efficiency of the	ne Carnot's engir	ne working betwe	een the steam point and the		
	ice point is:	0	0.20	the ocean point and the		
	(1) 36.81%	(2) 26.81%	(3) 40%	(4) 16.8%		
9.	If $a = 2i - 3j + 4ka$	and $\ddot{b} = 3i + 2j$,	then the angle be	tweena and b is:		
	(1) 45°	(2) 90°	(3) 180	(4) 120°		
10.	The value of the inte	$\operatorname{egral} \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}} +$	$\frac{1}{\sqrt{\cos x}} dx$ is			
	(1) π	$(2) \frac{\pi}{2}$	$(3) \frac{\pi}{4}$	(4) $-\frac{\pi}{4}$		
11.	In the usual notation	ns, the correct ex	pression for \sum_{11}	is:		
	(1) $\sum_{11} - \sum_{12} \sum_{22}^{-1}$	\sum_{21}	(2) $\sum_{11} -\sum_{11}$	$\sum_{i=1}^{-1} \sum_{i=2}^{-1} \sum_{$		
	(3) $\sum_{22} -\sum_{12} \sum_{11}^{-1}$	\sum_{21}	(4) $\sum_{22} -\sum_{1}^{2}$	$\sum_{11}^{-1} \sum_{12}$		
12.	and the second s					
	(1) Sufficient but not	t complete		icient and complete		
	(3) Complete but no	t sufficient		afficient nor complete		
RET/1	5/Test-B/896	(3				
		, 0	/	P.T.O.		
				· · I. U,		

Let $Y_{(1)}, Y_{(2)}, \dots, Y_{(n)}$, be the order statistic of a random sample from the probability density function $f(x) = \frac{1}{\pi [1 + (y - 0)^2]}$, $-\infty < y < \infty$

The minimal sufficient statistic is:

(2)
$$\prod_{i=1}^{n} y_{(i)}$$

$$(3) \quad \sum_{i=1}^n y_{i,i}$$

(4)
$$(y_{(1)}, y_{(2)}, ..., y_{(n)})$$

In the linear model $Y = X\beta + u$, if E(uu') = G and best linear unbiased estimator of β is DY, then:

(1)
$$D \cdot (X'X)^{-1}X'$$

(2)
$$D = (X'GX)^{-1}X'$$

(3)
$$D = (X'G^{-1}X)^{-1}X'G^{-1}$$

(4)
$$D = (X'GX)^{-1}X'G$$

In a 2^3 factorial experiment with r replicates, the block size is:

In a BIBD with t treatments in b blocks of K plots each and r replicates, which one of the followings is NOT TRUE?

(1)
$$rt = bk$$

(2)
$$b \ge f$$

(3)
$$r \ge k$$

$$(4) \quad b \le (r+t-k)$$

Let $X = (X_1, X_2, X_3)'$ follows a three-variate normal distribution with mean vector O and the covariance matrix $\begin{bmatrix} 1 & 0 & 1/4 \\ 0 & 1/4 & 0 \\ 1/4 & 0 & \frac{1}{2} \end{bmatrix}$

Then $E[X_1|X_2,X_3]$ is:

(1)
$$\frac{1}{2}(X_2 + X_3)$$

(2)
$$\frac{1}{2}X_3$$

(4)
$$\frac{1}{4} X_2 + \frac{1}{2} X_3$$

18. Let $x_1 = -2$, $x_2 = 1$, $x_3 = 3$, $x_4 = -4$ be the observed values of a random sample from the probability density function

$$f(x, \theta) = \frac{e^{-x}}{e^0 - e^{-\theta}}, -0 < x < \theta, \theta > 0$$

Then the maximum likelihood estimator of θ is :

(1) 3

(2) 0.5

(3) 4

- (4) 1.5
- **19.** Let X and Y be independently and identically distributed random variables such that $P[X=k]=p_k>0$ and $\sum_{k=0}^{\infty}p_k=1$

If P[X = t | (X + Y) = t] = P[X = (t-1) | (X + Y) = t], then X and Y follow:

- (1) Poisson distribution
- (2) Negative binomial distribution
- (3) Geometric distribution
- (4) None of these
- **20.** Let X_1 , X_2 ,....be independently and indentically distributed standard normal variables, then which one of the followings is TRUE?
 - (1) $\frac{\sqrt{n} X_1}{\sqrt{\sum_{i=1}^{n} X_i^2}}$ has t-distribution with (n-1) degrees of freedom
 - (2) $\frac{\sqrt{n} X_1}{\sqrt{\sum_{i=1}^{n} X_i^2}}$ has t- distribution with n degrees of freedom
 - (3) $\frac{\sqrt{n} X_1}{\sqrt{\sum_{i=2}^{n+1} X_i^2}}$ has t- distribution with (n-1) degrees of freedom
 - (4) $\frac{\sqrt{n} X_1}{\sqrt{\sum_{i=2}^{n+1} X_i^2}}$ has t- distribution with n degrees of freedom

21. Let $\Omega = [0, 1]$ and S be the Borel field of subsets of Ω . Define X on Ω as follows:

$$X(w) = \begin{cases} w & \text{if} \qquad 0 \le w \le \frac{1}{2} \\ w - \frac{1}{2} & \text{if} \qquad \frac{1}{2} < w \le 1 \end{cases}$$

Let A and B belonging to S denote $\left(\frac{1}{4}, \frac{1}{2}\right)$ and $\left(\frac{3}{4}, 1\right)$ respectively. Further, C

denotes $\{w: X(w) \in \left(\frac{1}{4}, \frac{1}{2}\right)\}$. Let $S_1: X$ is a random variable; $S_2: C = A \cup B$ and $S_3: C = A \cap B$. Then which of the following statements are always TRUE?

- (1) Only S_1 and S_2 (2) Only S_1 and S_3 (3) Only S_1
- (4) Only S_2
- **22.** If $X \ge 1$ is the critical region for testing $H_0: 0 = 2$ against $H_1: 0 = 1$ on the basis of a single observation from the population $f(x, 0) = 0e^{-0x}$, x > 0, then the value of type - Lerror is:
 - (1) $1/e^2$
- (2) $(e-1)/e^2$ (3) $(e^2-1/2)$
- (4) e^{2}
- 23. Let X be a random variable with probability density function

$$f(x, \mu) = \frac{1}{2} \exp(-\|x - \mu\|), -\infty < x < \infty$$

Then the maximum likelihood estimator of μ is :

(1) mean of the sample

(2) median of the sample

(3) mode of the sample

- (4) mean and median of the sample
- Let the random variable X follows N(0, 1) and the prior $g(\theta)$ follow $N(\mu, 1)$. Then the posterior distribution of 0 based on single observation is:
 - $(1) \ \ N\left(\frac{\mu+x}{2},\frac{1}{2}\right)$

(2) $N(\mu + x, 2)$

(3) $N\left(\mu, \frac{1}{2}\right)$

 $(4) N\left(x, \frac{1}{2}\right)$

RET/15/Test-B/896

- 25. If 0 is the probability of success in binomial distribution, then the Jeffrey's prior for binomial sampling is:
 - (1) $g(0) \alpha \frac{1}{\alpha}$

(2) $g(\theta) \propto \theta$

(3) $g(\theta) \propto B\left(\frac{1}{2}, \frac{1}{2}\right)$

- (4) $g(\theta) \propto a constant$
- Let R(t) and h(t) respectively denote the reliability and hazard rate of a unit at time t, then which of the following relation is TRUE?
 - (1) $\log R(t) = \int_0^t r(x) dx$

- (2) $\log R(t) = -\int_{0}^{t} r(x) dx$
- (3) $\log R(t) = 1 \int_0^t r(x) dx$
- (4) $\log R(t) = \exp\left\{-\int_0^t r(x) dx\right\}$
- 27. Which of the following distribution presents decreasing failure rate?
 - (1) normal distribution
 - (2) gamma distribution with shape parameter greater than one
 - (3) log normal distribution
 - (4) none of these
- **28.** Let X follow N_p (0, Σ) and P is a $p \times p$ non-singular matrix such that PX follows
 - (1) P is identity matrix

(2) P is an idempotent matrix

(3) $P'\Sigma P = I$

- (4) $P\Sigma P' = 1$
- 29. If for a finite population of size N, the probability of selection of the ith unit in the sample of size n is $P_i(i = 1, 2, ..., N)$ and $P_i \propto X_i$ where $\sum_{i=1}^{N} X_i = X_i$, then the usual ratio estimator becomes unbiased when the selection probability of a
 - (1) $\binom{N}{n} = \sum_{i=1}^{n} X_{i}$

(2) $\binom{N-1}{n-1} \frac{\sum_{i=1}^{n} X_i}{X_i}$

(3) $\left[\binom{N-n}{n-1}\right]^{-1} \frac{\sum_{i=1}^{n} X_i}{Y_i}$

 $(4) \quad \left[\binom{N}{n}\right]^{1} \frac{\sum_{i=1}^{n} X_{i}}{Y_{i}}$

31.	If ρ represents the coefficient of correlation between two variables Y and X in a
	finite population, then the regression method is better than the ratio method of
	estimation for:
	(1) all values of ρ
	(2) negative values of ρ only
	(3) for values of ρ lying between $\frac{1}{2}$ to 1 only
	(4) for values of ρ lying between $-\frac{1}{2}$ to -1 only
32.	Let $\{X_n, n > 0\}$ be a Markov chain with three states $\{0, 1, 2\}$ and with transition
	matrix
	$ \begin{bmatrix} 3/4 & 1/4 & 0 \\ 1/4 & 1/2 & 1/4 \\ 0 & 3/4 & 1/4 \end{bmatrix} $
	The initial probabilities are $P[X_0 = 1] = \frac{1}{3}$, $i = 0, 1, 2$
	Then $P[X_2 = 2, X_1 = 1, X_0 = 2]$ is equal to:
	(2) 1/16
	(1) 3/16 (4) 3/4
	(3) $3/64$
33	(3) $3/64$ Let X_1, X_2, \dots, X_n be a random sample from a Poisson distribution $P(\lambda)$. The Cramer-Rao Lower bound for the variance of an unbiased estimator of λ is:
	Cramer-Rao Lower bound for the
	(1) λ^2/n (2) $\frac{\sqrt{\lambda}}{n}$ (3) $\frac{\lambda}{n}$ (4) $\frac{\lambda}{\sqrt{n}}$
	(8)
RE'	r/15/Test-B/896

30. When sample size is large, the efficiency of the estimator of population mean in

(2) Simple random sampling

(4) Proportional allocation

post stratification is approximately equal to that of:

(1) Neyman allocation

(3) Cluster sampling

34. For testing $H_0: \theta = \frac{1}{2}$ against $H_1: \theta = \frac{3}{4}$ on the basis of a single observation X from binomial distribution b(2, θ), a test function is defined as

$$\phi(x) = \begin{cases} 1 & \text{if} & x > 2 \\ \frac{1}{20} & \text{if} & x = 2 \\ 0 & \text{if} & x < 2 \end{cases}$$

The size of the test is:

- (1) 1/80
- (2) 1/20
- (3) 1/60
- (4) 1/10
- **35.** In the following life table, some entries are missing:

$$\underline{x}$$
 $_{5}q_{x}$ l_{x} $_{5}d_{x}$

- 20 0.006338 94864
- 25 0.006650
- 30 0.008087
- 35 92879

The values of l_{25} and l_{30} are respectively:

(1) (94564, 92140)

(2) (94263, 93636)

(3) (94980, 92050)

- (4) (93500, 94564)
- **36.** Given l_0 in a life table, the entries of other columns can be computed only with the knowledge of :
 - (1) age-specific fertility rates
- (2) crude death rate

(3) crude birth rate

(4) age-specific mortality rates

RET/15/Test-B/896

(9)

P. T. O.

37. Systematic sampling would be more efficient as compared with SRSWOR if: (2) $\rho > \frac{1}{(nk-1)}$ (1) $\rho < -\frac{1}{nk-1}$ (4) $\rho = \frac{1}{(nk-1)}$ (3) $\rho < \frac{1}{(nk-1)}$ In $Y = X\beta + u$, $E(uu') = \sigma^2 I_n$, the value of $\hat{\beta}$ for which $(Y - X\hat{\beta})' (Y - X\hat{\beta})$ is minimum is b. Then $\frac{1}{\sigma^2}E(b-\beta)(b-\beta)'$ is: (3) $(X'X)^{-1}$ (4) (XX')⁻¹ (2) X'X $(1) I_n$ 39. Let X_1 , X_2 ,, X_n be a random sample from a Bernoulli distribution with parameter p, $0 . For estimating p, the bias of the estimator <math>\frac{\sqrt{n} + 2\sum_{i=1}^{n} X_i}{2(n + \sqrt{n})}$ is: (2) $\frac{1}{\sqrt{n+p}} \left(\frac{1}{2} - p \right)$ (1) $\frac{1}{\sqrt{p}+1} \left(p - \frac{1}{2} \right)$ (4) $\frac{1}{\sqrt{p+1}} \left(\frac{1}{2} - p \right)$ (3) $\frac{1}{\sqrt{n+1}} \left(\frac{1}{2} + \frac{p}{\sqrt{n}} \right) - p$ For the following transportation problem, one applies the North-West corner rule to find the first feasible solution: Availability O_1 5 3 6 19 O₂ 4 7 9 1 37 $O_3 \ 3 \ 4 \ 7$ 34 25 31 16 18 Demand The value of the objective function would be:

(1) 586

(2) 517

(3) 580

(4) 590

RET/15/Test-B/896

(10)

Attempt any five questions. Write answer in 150-200 words. Each question carries 16 marks. Answer each question on separate page, after writing Question Number.

- 1. What is a parallel system? Obtain the expressions for the reliability, hazard rate and mean time to system failure of a system of n components assuming constant hazard rate for each component.
- 2. Define consistency and state the invariance property of consistency.
- 3. What is conjugate prior? Give examples of conjugate priors.
- **4.** Describe the method of finding the discontinuity points of cumulative density function of a random variable whose characteristic function is $(q + pe^{it})$.
- **5.** The joint probability density function of X and Y is given by

$$f(x, y) = \frac{1}{2x^2y}, 1 \le x \le \infty; \frac{1}{x} < y < x$$

Find the conditional distribution of X given Y.

- **6.** In order to resolve the problem of non-response explain the method of subsampling of non-respondents and define an unbiased estimator for population mean under this method.
- 7. Solve the following 2-machine and 7-job sequencing problem:

job: 1 2 3 4 5 6 7

Machine A: 10 12 13 7 14 5 16

Machine B: 15 11 8 9 6 7 16

- 8. Discuss the direct method of standardization of death rates with an example.
- **9.** Define Mahalanobis D^2 -statistic and explain its uses. How the T^2 -statistic is related with D^2 -statistics?
- 10. Define Midzuno method of sampling and hence obtain the expressions of π_i and $\pi_{ij}.$

RET/15/Test-B/896

(11)

P.T.O.

Roll No.:		

D 11 %	
ROH NO	
MOH IND.	***************************************

Roll No.:	

Roll No.:	

FOR ROUGH WORK

	# ×0	
		×
M		
	ē	
	159	
	26	